Dexamethasone inhibited type 2 cytokine production by blood ILC2s. IL-7 and TSLP abrogated this inhibition and induced steroid resistance of ILC2s in a MEK- and STAT5-dependent manner. BAL fluid ILC2s from asthmatic patients with increased TSLP levels were steroid resistant, which was reversed by clinically available inhibitors of MEK and STAT5.
Warburg and coworkers (Warburg O, Posener K, Negelein E. Z Biochem 152: 319, 1924) first reported that cancerous cells switch glucose metabolism from oxidative phosphorylation to aerobic glycolysis, and that this switch is important for their proliferation. Nothing is known about aerobic glycolysis in T cells from asthma. The objective was to study aerobic glycolysis in human asthma and the role of this metabolic pathway in airway hyperreactivity and inflammation in a mouse model of asthma. Human peripheral blood and mouse spleen CD4 T cells were isolated by negative selection. T cell proliferation was measured by thymidine incorporation. Cytokines and serum lactate were measured by ELISA. Mouse airway hyperreactivity to inhaled methacholine was measured by a FlexiVent apparatus. The serum lactate concentration was significantly elevated in clinically stable asthmatic subjects compared with healthy and chronic obstructive pulmonary disease controls, and negatively correlated with forced expiratory volume in 1 s. Proliferating CD4 T cells from human asthma and a mouse model of asthma produced higher amounts of lactate upon stimulation, suggesting a heightened glycolytic activity. Lactate stimulated and inhibited T cell proliferation at low and high concentrations, respectively. Dichloroacetate (DCA), an inhibitor of aerobic glycolysis, inhibited lactate production, proliferation of T cells, and production of IL-5, IL-17, and IFN-γ, but it stimulated production of IL-10 and induction of Foxp3. DCA also inhibited airway inflammation and hyperreactivity in a mouse model of asthma. We conclude that aerobic glycolysis is increased in asthma, which promotes T cell activation. Inhibition of aerobic glycolysis blocks T cell activation and development of asthma.
Oxidative stress from ozone (O3) exposure augments airway neutrophil recruitment and chemokine production. We and others have shown that severe and sudden asthma is associated with airway neutrophilia, and that O3 oxidative stress is likely to augment neutrophilic airway inflammation in severe asthma. However, very little is known about chemokines that orchestrate oxidative stress-induced neutrophilic airway inflammation in vivo. To identify these chemokines, three groups of BALB/c mice were exposed to sham air, 0.2 ppm O3, or 0.8 ppm O3 for 6 h. Compared with sham air, 0.8 ppm O3, but not 0.2 ppm O3, induced pronounced neutrophilic airway inflammation that peaked at 18 h postexposure. The 0.8 ppm O3 up-regulated lung mRNA of CXCL1,2,3 (mouse growth-related oncogene-α and macrophage-inflammatory protein-2), CXCL10 (IFN-γ-inducible protein-10), CCL3 (macrophage-inflammatory protein-1α), CCL7 (monocyte chemoattractant protein-3), and CCL11 (eotaxin) at 0 h postexposure, and expression of CXCL10, CCL3, and CCL7 mRNA was sustained 18 h postexposure. O3 increased lung protein levels of CXCL10, CCL7, and CCR3 (CCL7R). The airway epithelium was identified as a source of CCL7. The role of up-regulated chemokines was determined by administering control IgG or IgG Abs against six murine chemokines before O3 exposure. As expected, anti-mouse growth-related oncogene-α inhibited neutrophil recruitment. Surprisingly, Abs to CCL7 and CXCL10 also decreased neutrophil recruitment by 63 and 72%, respectively. These findings indicate that CCL7 and CXCL10, two chemokines not previously reported to orchestrate neutrophilic inflammation, play a critical role in mediating oxidative stress-induced neutrophilic airway inflammation. These observations may have relevance in induction of neutrophilia in severe asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.