If a surface stabilized ferroelectric liquid crystal cell is cooled from the smectic-A to the smectic-C phase its layers thin causing V-shaped (chevron like) defects to form. These create an energy barrier that can prevent switching between equilibrium patterns. We examine a gradient flow for a mesoscopic Chen-Lubensky energy F (ψ, n) that allows the order parameter to vanish, so that the energy barrier does not diverge if the layer thickness becomes small. The liquid crystal can evolve during switching in such a way that the layers are allowed to melt and heal near the chevron tip in the process.
We study order reconstruction (OR) solutions in the Beris-Edwards framework for nematodynamics, for both passive and active nematic flows in a microfluidic channel. OR solutions exhibit polydomains and domain walls, and as such, are of physical interest. We show that OR solutions exist for passive flows with constant velocity and pressure, but only for specific boundary conditions. We prove the existence of unique, symmetric and non-singular nematic profiles, for boundary conditions that do not allow for OR solutions. We compute asymptotic expansions for ORtype solutions for passive flows with non-constant velocity and pressure, and active flows, which shed light into the internal structure of domain walls. The asymptotics are complemented by extensive numerical studies that demonstrate the universality of OR-type structures in static and dynamic scenarios.
The May–Leonard model was introduced to examine the behavior of three competing populations where rich dynamics, such as limit cycles and nonperiodic cyclic solutions, arise. In this work, we perturb the system by adding the capability of global mutations, allowing one species to evolve to the other two in a linear manner. We find that for small mutation rates, the perturbed system not only retains some of the dynamics seen in the classical model, such as the three-species equal-population equilibrium bifurcating to a limit cycle, but also exhibits new behavior. For instance, we capture curves of fold bifurcations where pairs of equilibria emerge and then coalesce. As a result, we uncover parameter regimes with new types of stable fixed points that are distinct from the single- and dual-population equilibria characteristic of the original model. On the contrary, the linearly perturbed system fails to maintain heteroclinic connections that exist in the original system. In short, a linear perturbation proves to be significant enough to substantially influence the dynamics, even with small mutation rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.