The pyrH gene, encoding UMP-kinase from Escherichia coli, was cloned using as a genetic probe the property of the carAB operon to be controlled for its expression by the concentration of cytoplasmic UTP. The open reading frame of the pyrH gene of 723 bp was found to be identical to that of the smbA gene [Yamanaka, K., et al. (1992) J. Bacteriol. 174, 7517-7526], previously described as being involved in chromosome partitioning in E. coli. The bacterial UMP-kinase did not display significant sequence similarity to known nucleoside monophosphate kinases. On the contrary, it exhibited similarity with three families of enzymes including aspartokinases, glutamate kinases, and Pseudomonas aeruginosa carbamate kinase. UMP-kinase overproduced in E. coli was purified to homogeneity and analyzed for its structural and catalytic properties. The protein consists of six identical subunits, each of 240 amino acid residues (the N-terminal methionine residue is missing in the expressed protein). Upon excitation at 295 nm, the bacterial enzyme exhibits a fluorescence emission spectrum with maximum at 332 nm which indicates that the single tryptophan residue of the protein (Trp119) is located in a hydrophobic environment. Like other enzymes involved in the de novo synthesis of pyrimidine nucleotides, UMP-kinase of E. coli is subject to regulation by nucleotides: GTP is an allosteric activator, whereas UTP serves as an allosteric inhibitor. UTP and UDP, but none of the other nucleotides tested such as GTP, ATP, and UMP, enhanced the fluorescence of the protein. The sigmoidal shape of the dose-response curve indicated cooperativity in binding of UTP and UDP.(ABSTRACT TRUNCATED AT 250 WORDS)
CMP kinase from Escherichia coli is a monomeric protein of 225 amino acid residues. The protein exhibits little overall sequence similarities with other known NMP kinases. However, residues involved in binding of substrates and/or in catalysis were found conserved, and sequence comparison suggested conservation of the global fold found in adenylate kinases or in several CMP/UMP kinases. The enzyme was purified to homogeneity, crystallized, and analyzed for its structural and catalytic properties. The crystals belong to the hexagonal space group P6 3 , have unit cell parameters a ؍ b ؍ 82.3 Å and c ؍ 60.7 Å, and diffract x-rays to a 1.9 Å resolution. The bacterial enzyme exhibits a fluorescence emission spectrum with maximum at 328 nm upon excitation at 295 nm, which suggests that the single tryptophan residue (Trp 30 ) is located in a hydrophobic environment. Substrate specificity studies showed that CMP kinase from E. coli is active with ATP, dATP, or GTP as donors and with CMP, dCMP, and arabinofuranosyl-CMP as acceptors. This is in contrast with CMP/UMP kinase from Dictyostelium discoideum, an enzyme active on CMP or UMP but much less active on the corresponding deoxynucleotides. Binding of CMP enhanced the affinity of E. coli CMP kinase for ATP or ADP, a particularity never described in this family of proteins that might explain inhibition of enzyme activity by excess of nucleoside monophosphate.
UMP-kinase from Escherichia coli, unlike the analogous enzyme from eukaryotic organisms, is an oligomeric protein subjected to complex regulatory mechanisms in which UTP and GTP act as allosteric effectors. While the enzyme has an unusually low solubility at neutral pH (< or = 0.1 mg of protein/ mL), its solubility increases markedly above pH 8 and below pH 4. Furthermore, the solubility of the bacterial UMP-kinase at neutral pH is greatly enhanced in the presence of Mg-free UTP. Thermal denaturation experiments have demonstrated that UTP also increases the stability of the protein. Fourier-transform infrared spectroscopy and circular dichroism show that the secondary structure of the protein is the same at neutral and at alkaline pH. These data indicate that variations in enzyme solubility must be related to subtle changes in the tertiary and/or quaternary structure which modulate the exposure of hydrophobic surfaces in the protein molecule. A variant of UMP-kinase, obtained by site-directed mutagenesis (Asp159Asn), which is similar to the wild-type enzyme in its stability and kinetic properties, has a much increased water solubility (> 5 mg protein/mL) even at neutral pH. This suggests that salt bridges may be involved in the equilibrium between the soluble and aggregated forms of the wild-type enzyme, and that conformational changes induced upon binding of UTP increase the protein solubility by disrupting these salt bridges.
UMP kinase from Escherichia coli is one of the four regulatory enzymes involved in the de novo biosynthetic pathway of pyrimidine nucleotides. This homohexamer, with no counterpart in eukarya, might serve as a target for new antibacterial drugs. Although the bacterial enzyme does not show sequence similarity with any other known nucleoside monophosphate kinase, two segments between amino acids 35 to 78 and 145 to 194 exhibit 28% identity with phosphoglycerate kinase and 30% identity with aspartokinase, respectively. Based on these similarities, a number of residues of E. coli UMP kinase were selected for site-directed mutagenesis experiments. Biochemical, kinetic, and spectroscopic analysis of the modified proteins identified residues essential for catalysis (Asp146), binding of UMP (Asp174), and interaction with the allosteric effectors, GTP and UTP (Arg62 and Asp77).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.