Two questions are asked: the first is if the lack/presence of methoxyl moiety at aromatic ring essentially affects the stability of curcuminoid-metal complexes, and the second is if it is possible that in the metal complexes one of the possible demethoxycurcumin structures predominates. To answer the first question, the ESI-MS/MS spectra were taken of ions containing demethoxycurcumin, curcumin, and metal cation (e.g., ion [dCurc + Curc-H + Pb]+), and in order to answer the second question the ESI-MS/MS spectra were recorded of ions containing demethoxycurcumin and metal cation (e.g., ion [dCurc-H + Zn]+). An interpretation of the mass spectra has indicated that (i) for some metals, curcumin-metal complexes are more stable than demethoxycurcumin-metal complexes and for some metals vice versa, and (ii) in demethoxycurcumin-metal complexes structure B1 [(1E,4Z,6E)-5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)hepta-1,4,6-trien-3-one] is more stable than structure B2 [(1E,4Z,6E)-5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)hepta-1,4,6-trien-3-one].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.