Detailed analysis of indoor radon concentration distribution by floors was conducted in four children institutions, one office building and two residential houses in Russian cities to develop approaches to draw up a program of radon survey for big buildings. Higher variability of radon concentration was found in high geogenic radon potential (GRP) area when the soil is the main source of radon. No essential dependence of radon concentration on the floor in high-rise buildings was found in low GRP area. The number of required radon measurements is estimated using obtained characteristics of radon variability.
Radioecological monitoring of radon-hazardous territories in residential and public buildings of the towns of Lermontov (Russia, Stavropol Region) and Baley (Russia, Transbaikal Region) made it possible to reveal that the volume activity of radon in premises on 1 floor of buildings reliably characterizes the radon inflow from the soil surface. This control parameter, which can be used to estimate the radon danger of the territory, to make decisions on the sanitary condition of the building, to estimate the potential danger to the population or personnel, to calculate the potential dose rates. Improvement of radio-ecological monitoring in potentially radon-hazardous areas is aimed at monitoring the volume activity of radon on 1 floor of buildings, the excess of which is higher than the normal values is the basis for making managerial decisions to protect the population or staff.
Modern radioecological studies to assess the effect of natural radiation on the human body have shown that at the moment of development of society, the main contribution to the exposure of the population is made by natural sources of ionizing radiation, while from 50 to 90 % of the dose load are caused by the gas radon-222 (222Rn) and daughter products of its decay.
This paper presents the results of radiation-hygienic monitoring of the potentially radon-hazardous territory of the city of Baley, Trans-Baikal Territory. The measurement of the volumetric activity of radon (OARn) was carried out in the premises of residential and public buildings by the integral method using track exposure meters REI-4. According to the indicator of the equivalent equilibrium volumetric activity of radon (EROARn), a radiation-hygienic assessment of the premises and the calculation of potential dose loads on the population living in this territory were carried out.
Studies have shown that OARn in residential and public buildings depends on the geological characteristics of the territory, on the design and design of buildings and structures, and on the building materials used. It was found that the main criterion for assessing the potential radon hazard of territories is the value of OARn in rooms on the 1st floors of buildings. According to the degree of potential radon hazard, the territory of the city of Baley can be conditionally divided into 3 types: 1 type – the territory located on a geological fault; Type 2 – the southern part of the city, represented by sedimentary rocks; Type 3 – the northern part of the city, represented by rocks of the basic gabbroid group with a low content of natural radionuclides. The types of buildings and structures and the type of building materials affect the dose load, but do not determine it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.