The main objective of the “Guidelines for the development of agricultural biogas plants in Poland within 2010-2020”, is a construction of biogas plants processing agricultural biomass resources with suitable conditions in each municipality. In the Czech Republic produces about 6.5% of energy from renewable sources. Biogas plants give - contrary to solar and wind electricity stations - the stable performance throughout the whole year. Biomass should be a key source for achieving the Czech EU commitment to produce 13% of energy from renewable sources in 2020. The experience, where 317 Agricultural biogas plants are currently in operation, has shown that there are considerable problems with a proper location of newly designed agricultural biogas plants in the landscape. The Czech-Polish border area is mainly flat wooded recreation region. For these reasons, the Gaussian model SYMOS’97 (version 2013), adapted for odour dispersion modelling from large agricultural sources is supposed to be suitable for this area. It is appropriate for training of students. For these reasons, students from the University of Hradec Kralove and the University of Opole in the frame of their academic exchange and professional internships are acquainted with the technological principles of biogas plants and in environmental mathematical and statistical modelling of the spread of emissions from large industrial and agricultural sources. In this article we present methods for education on these professional areas.
Recently, there is a growing pressure on a rapid construction of agricultural biogas plants, particularly in the Czech-Polish border region. It is an area with large expanses of agricultural land which can serve to supply biogas plants with biomass. This strategy should contribute to harmonize the common agricultural policy of the European Union. A need for qualified operators of these stations on this territory is also increasing. Therefore we first include a demonstration of an education program for students in the field of agricultural waste anaerobic fermentation and biogas production. We present here the first part of an innovative approach which we use in the teaching program "Physico-technical Measurements and Computer Technology" at the Faculty of Science at the University of Hradec Kralove and also in the education of internshipers from the Faculty of Natural Sciences and Technology at the University of Opole. There are requirements to fulfil labour market expectations and to make this subject more attractive for the students. Students' theoretical and practical preparation constitutes a comprehensive source of knowledge and skills required in a real life job. Joined theoretical and practical knowledge gained by students, reinforced by the skills developed during task analysis followed by their solution, provides the future graduate higher quality abilities and better position in the labour market.
Passive biomonitoring using 210 Pb was used in the paper to evaluate pollutant deposition. Well-developed epiphytic foliose lichens Hypogymnia physodes growing on spruce branches were used in the studies. The samples of mosses Pleurozium schreberi and soil (raw humus) were collected from the area around the tree from which the samples of lichens were collected. The studies have shown that it is possible to identify dust emission sources using a radioactive lead isotope ( Pb is one of the emission components.
Tightening of norms for air protection leads to a development of new and significantly more effective techniques for removing particulate matter, SOx and NOx from flue gas which originates from large solid fuel combustion. Recently, it has been found that combinations of these environmental technologies can also lead to the reduction of mercury emissions from coal power plants. Now the greatest attention is paid especially to the coal power plant in Opatovice nad Labem, close to Hradec Kralove. Its system for flue gas dedusting was replaced by a modern type of cloth fabric filter with the highest particle separation efficiency which belongs to the category of BAT. Using this technology, together with modernization of the desulphurisation device and increasing of nitrogen oxides removal efficiency, leads also to a reduction of mercury emissions from this power plant. The University of Hradec Kralove, the Opole University and EMPLA Hradec Kralove successfully cooperate in the field of toxic metals biomonitoring almost 20 years. In the Czech-Polish border region, comprehensive biomonitoring of mercury in bioindicators Xerocomus badius in 9 long-term monitored reference points is done. The values of mercury concentration measured in 2012 and 2016 were compared with values computed by a dispersion model SYMOS´97 (updated 2014). Thanks to modern methods of dedusting and desulphurisation, emissions of mercury from this large coal power plant are now smaller than before and that the downward trends continues. The results indicate that Xerocomus badius is a suitable bioindicator for a long-term monitoring of changes in mercury imissions in this forested border region. This finding is significant because it shows that this region is suitable for leisure, recreation, and rehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.