The effect of konjac glucomannan (KGM) on the retrogradation of amylose was explored during storage. The color, rheological properties, texture, water-holding capacity (WHC), low-field nuclear magnetic resonance (LF-NMR), and X-ray diffraction (XRD) were investigated. Results of color and rheological measurements showed that with the increasing amount of KGM, the L value of the system decreased, but the elastic modulus, viscous modulus, and tangent value of loss angle increased. The textural result presented that KGM obviously inhibited the growth rate of gel strength of amylose. Results from WHC and XRD suggested after 14 days of storage, when the concentration of KGM increased from zero to 0.3% in the mixture, the WHC grew from 80% to 95% and the crystallinity degree declined from 35.3% to 25.6%. The LF-NMR result revealed that KGM limited the conversion of free water to bound water in the system. In general, a small amount of KGM in a mixed system could inhibit the short-term and long-term retrogradation of amylose. This research could provide a theoretical reference for the influence of hydrophilic colloids on the retrogradation of starch, and it could also provide support for the processing and production of starch-based food.
The impact of konjac glucomannan (KGM) with different molecular weight (Mw) on the retrogradation properties of pea starch, such as color, viscoelasticity, gel strength, water holding capacity (WHC), moisture distribution and crystallinity, was investigated. At the same time as the Mw of KGM decreased, the lightness, elastic modulus, gel strength, water freedom and crystallinity of pea starch showed an increasing trend, whereas the viscosity modulus and WHC showed a decreasing trend. At one day of storage, compared with single pea starch, KGM with low Mw made gel strength increase from 40 g to 45 g, WHC decrease from 82% to 65% and crystallinity increase from 21.3% to 24.0%. Therefore, KGM with low Mw could promote retrogradation of pea starch in the short-term. At 7 days or even 14 days of storage, KGM with medium-high Mw had smaller indices than those of pure pea starch, including the lightness, storage modulus, gel strength, water freedom and crystallinity. This indicated that KGM with medium-high Mw could inhibit the long-term retrogradation of starch. The larger the Mw of KGM, the more noticeable the inhibition effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.