The efficient separation of xenon (Xe) and krypton (Kr) is one of the industrially important processes. While adsorptive separation of these two species is considered to be an energy efficient process, developing highly selective adsorbent remains challenging. Herein, a rigid squarate-based metal− organic framework (MOF), having a perfect pore size (4.1 Å × 4.3 Å) comparable with the kinetic diameter of Xe (4.047 Å) as well as pore surface decorated with very polar hydroxyl groups, is able to effectively discriminate Xe atoms, affording a record-high Xe/Kr selectivity. An exceptionally high Xe uptake capacity of 58.4 cm 3 /cm 3 and selectivity of 60.6 at low pressure (0.2 bar) are achieved at ambient temperature. The MOF exhibits the highest Xe Henry coefficient (192.1 mmol/g/bar) and Xe/Kr Henry selectivity (54.1) among all state-of-the-art adsorbents reported so far. Direct breakthrough experiments further confirm the excellent separation performance. The density functional theory calculations reveal that the strong interaction between Xe and the framework is a result of the synergy between optimal pore size and polar porosity.
The separation and purification of xylene isomers is an industrially important but challenging process. Developing highly efficient adsorbents is crucial for the implementation of simulated moving bed technology for industrial separation of these isomers. Herein, we report a stacked one-dimensional coordination polymer {[Mn(dhbq)(H 2 O) 2 ], H 2 dhbq = 2,5-dihydroxy-1,4-benzoquinone} that exhibits an ideal molecular recognition and sieving of xylene isomers. Its distinct temperature-adsorbate–dependent adsorption behavior enables full separation of p -, m -, and o -xylene isomers in both vapor and liquid phases. The delicate stimuli-responsive swelling of the structure imparts this porous material with exceptionally high flexibility and stability, well-balanced adsorption capacity, high selectivity, and fast kinetics at conditions mimicking industrial settings. This study may offer an alternative approach for energy-efficient and adsorption-based industrial xylene separation and purification processes.
Selective elimination of sulfur dioxide is significant in flue gas desulfurization and natural gas purification, yet developing adsorbents with high capture capacity especially at low partial pressure as well as excellent cycling stability remains a challenge. Herein, a family of isostructural gallate-based MOFs with abundant hydrogen bond donors decorating the pore channel was reported for selective recognition and dense packing of sulfur dioxide via multiple hydrogen bonding interactions. Multiple O···H–O hydrogen bonds and O···H–C hydrogen bonds guarantee SO2 molecules are firmly grasped within the framework, and appropriate pore apertures afford dense packing of SO2 with high uptake and density up to 1.86 g cm–3, which is evidenced by dispersion-corrected density functional theory calculations and X-ray diffraction resolution of a SO2-loaded single crystal. Ultrahigh adsorption uptake of SO2 at extremely low pressure (0.002 bar) was achieved on Co-gallate (6.13 mmol cm–3), outperforming all reported state-of-the-art MOFs. Record-high IAST selectivity of SO2/CO2 (325 for Mg-gallate) and ultrahigh selectivity of SO2/N2 (>1.0 × 104) and SO2/CH4 (>1.0 × 104) were also realized. Breakthrough experiments further demonstrate the excellent removal performance of trace amounts of SO2 in a deep desulfurization process. More importantly, M-gallate shows almost unchanged breakthrough performance after five cycles, indicating the robust cycling stability of these MOFs.
The pore size of adsorbents plays a vital role in determining the overall separation performance of gas separation and purification by adsorption. In this work, the pore apertures of the coordination pillared layer (CPL) was systematically controlled by adjusting the length of pillared ligands. We used pyrazine, 4,4′-bipyridine, and 1,2-di(4-pyridyl)-ethylene with increased length to synthesize CPL-1 (L = pyrazine), CPL-2 (L = 4,4′-bipyridine), and CPL-5 [L = 1,2-di(4-pyridyl)-ethylene], respectively. The aperture size of these CPLs varies from 4 to 11 Å: CPL-1 (4 × 6 Å 2 ), CPL-2 (9 × 6 Å 2 ), and CPL-5 (11 × 6 Å 2 ). Among the three frameworks, CPL-2 exhibits the highest C 2 H 2 uptake at ambient conditions as it has moderate pore size and porosity. However, CPL-1 has the best separation performance in the breakthrough experiments with binary gas mixture of C 2 H 2 /C 2 H 4 , thanks to the optimal pore size nearly excluding C 2 H 4 , which is only observed in the state-of-the-art UTSA-300a so far. The DFT calculations were carried out to elucidate the specific adsorption sites for both acetylene and ethylene among these frameworks. The modeling results suggest that binding strength is highly related to aperture size and that CPL-1 shows the highest adsorption selectivity owing to the optimal pore size. This work demonstrates that engineering pore size enables us to fabricate the highly efficient metal−organic framework (MOF)-based adsorbents for specific gas separation on the basis of the isoreticular chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.