Abstract:In data-intensive real-time applications, e.g., cognitive assistance and mobile health (mHealth), the amount of sensor data is exploding. In these applications, it is desirable to extract value-added information, e.g., mental or physical health conditions, from sensor data streams in real-time rather than overloading users with massive raw data. However, achieving the objective is challenging due to the data volume and complex data analysis tasks with stringent timing constraints. Most existing big data management systems, e.g., Hadoop, are not directly applicable to real-time sensor data analytics, since they are timing agnostic and focus on batch processing of previously stored data that are potentially outdated and subject to I/O overheads. Moreover, embedded sensors and IoT devices lack enough resources to perform sophisticated data analytics. To address the problem, we design a new real-time big data management framework to support periodic in-memory real-time sensor data analytics at the network edge by extending the map-reduce model originated in functional programming, while providing adaptive sensor data transfer to the edge server based on data importance. In this paper, a prototype system is designed and implemented as a proof of concept. In the performance evaluation, it is empirically shown that important sensor data are delivered in a preferred manner and they are analyzed in a timely fashion.
In data-intensive real-time applications, e.g., transportation management and location-based services, the amount of sensor data is exploding. In these applications, it is desirable to extract value-added information, e.g., fast driving routes, from sensor data streams in real-time rather than overloading users with massive raw data. However, achieving the objective is challenging due to the data volume and complex data analysis tasks with stringent timing constraints. Most existing big data management systems, e.g., Hadoop, are not directly applicable to real-time sensor data analytics, since they are timing agnostic and focus on batch processing of previously stored data that are potentially outdated and subject to I/O overheads. To address the problem, we design a new real-time big data management framework, which supports a non-preemptive periodic task model for continuous in-memory sensor data analysis and a schedulability test based on the EDF (Earliest Deadline First) algorithm to derive information from current sensor data in realtime by extending the map-reduce model originated in functional programming. As a proof-of-concept case study, a prototype system is implemented. In the performance evaluation, it is empirically shown that all deadlines can be met for the tested sensor data analysis benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.