In this paper, an innovative closed hydraulic wind turbine with an energy storage system is proposed. The hydraulic wind turbine consists of the wind rotor, the variable pump, the hydraulic bladder accumulator, the variable motor, and the synchronous generator. The wind energy captured by the wind rotor is converted into hydraulic energy by the variable pump, and then the hydraulic energy is transformed into electrical energy by the variable motor and generator. In order to overcome the fluctuation and intermittence shortcomings of wind power, the hydraulic bladder accumulator is used as an energy storage system in this system to store and release hydraulic energy. A double-loop speed control scheme is presented to allow the wind rotor to operate at optimal aerodynamic performance for different wind speeds and hold the motor speed at the synchronous speed to product constant frequency electrical power regardless of the changes of wind speed and load power. The parameter design and modeling of 600 kW hydraulic wind turbine are accomplished according to the Micon 600 kW wind turbine. Ultimately, time-domain simulations are completed to analyze the dynamic response of the hydraulic wind turbine under the step change conditions of wind speed, rotor speed input, and load power. The simulation results validate the efficiency of the hydraulic wind turbine and speed control scheme presented, moreover, they also show that the systems can achieve the automatic matching among turbine energy, accumulator energy, and generator output energy.
To eliminate the adverse effect of the fluctuation and intermittence of wind power on the quality and stability of electrical power system, an energy storage system is introduced into the closed-loop hydraulic system of hydraulic wind turbine for the first time. The whole hydraulic system consists of a fixed displacement pump, a variable displacement motor, two proportional control valves and an energy storage system. The energy storage system absorbs or releases oil as the wind fluctuates. When the wind suddenly disappears, the generator can continue to produce electrical energy by means of the discharge of the hydraulic energy stored in the energy storage system. On the basis of modelling all hydraulic components, the simulation model of the hydraulic system is established. A new control method is presented within this article, which keeps the motor speed constant to generate constant frequency electrical power when the rotational speed of the wind wheel changes. Ultimately, simulations under the two conditions of step and sine wind wheel speeds are done. The simulation results demonstrate how the motor, the proportional valves and the energy storage system work together when the wind wheel speed varies and also prove validity of the control method we designed.
Energy storage plays a major role in solving the fluctuation and intermittence problem of wind and the effective use of wind power. The application of the hydraulic accumulator is the most efficient and convenient way to store wind energy in hydraulic wind turbines. A hydraulic energy storage generation system (HESGS) can transform hydraulic energy stored in the hydraulic accumulator into stable and constant electrical energy by controlling the variable motor, regardless of wind changes. The aim of the present study is to design a constant speed control method for the variable motor in the HESGS and investigate the influence of the controller's main parameters on the resistance of the HESGS to external load power disturbances. Mathematical equations of all components in this system are introduced and an entire system simulation model is built. A double closed-loop control method of the variable motor is presented within this paper, which keeps the motor speed constant for the fixed frequency of electrical power generated by the HESGS. Ultimately, a series of simulations with different proportional gains and integral gains under the environment of changeless load power step are conducted. At the same time, comparison analyses of the experiment and simulation under variable load power step are performed. The results verify the correctness and the usability of the simulation model, and also indicate that the proposed control method is robust to the disturbances of changing load power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.