In order to decrease inter- and intra-observer variability in delineating OARs relevant for neuro-oncology and thus derive consistent dosimetric data, we propose this atlas to be used in photon and particle therapy. The atlas is available online at www.cancerdata.org and will be updated whenever required.
Eekers et al. have recently proposed a neuro-oncology atlas, which was co-authored by most centers associated in the European Proton Therapy Network (EPTN; Figure 1). With the introduction of new treatment techniques, such as integrated magnetic resonance imaging and linear accelerators (MR-linac) or particle therapy, the prediction of clinical efficacy of these more costly treatment modalities becomes more relevant. One of the side-effects of brain irradiation, being cognitive decline, is one of the toxicities most difficult to measure and predict. In order to validly compare different treatment modalities, 1) a uniform nomenclature of the organs at risk (OARs), 2) uniform atlas-based delineation [e.g., Eekers et al.], 3) long-term follow-up data with standardized cognitive tests, 4) a large patient population, and 5) (thus derived) validated normal tissue complication probability (NTCP) models are mandatory.Apart from the Gondi model, in which the role of the dose to 40% of both hippocampi (HC) proves to be significantly related to cognition in 18 patients, no similar models are available. So there is a strong need for more NTCP models, on HC, brain tissue and possible other relevant brain structures.In this review we summarize the available evidence on the role of the posterior cerebellum as a possible new organ at risk for cognition, which is deemed relevant for irradiation of brain and head and neck tumors.
Highlights
There is a dosimetric advantage for IMPT over VMAT in patients receiving radiation treatment for pilocytic astrocytoma.
The novel RPSS is a practical scoring system making translation of dose differences into clinically relevant endpoints possible.
Following the lower RPSS toxicity scores for IMPT, less toxicity is likely to be expected in patients treated with IMPT vs VMAT in this pilocytic astrocytoma cohort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.