PurposeThe aim of the present study was to compare the dose distribution generated from photon volumetric modulated arc therapy (VMAT), intensity modulated proton therapy (IMPT), and intensity modulated carbon ion therapy (IMCIT) in the delivery of hypo-fractionated thoracic radiotherapy.Methods and materialsTen selected patients who underwent thoracic particle therapy between 2015 and 2016 were re-planned to receive a relative biological effectiveness (RBE) weighted dose of 60 Gy (i.e., GyE) in 15 fractions delivered with VMAT, IMPT, or IMCIT with the same optimization criteria. Treatment plans were then compared.ResultsThere were no significant differences in target volume dose coverage or dose conformity, except improved D95 was found with IMCIT compared with VMAT (p = 0.01), and IMCIT was significantly better than IMPT in all target volume dose parameters. Particle therapy led to more prominent lung sparing at low doses, and this result was most prominent with IMCIT (p < 0.05). Improved sparing of other thoracic organs at risk (OARs) was observed with particle therapy, and IMCIT further lowered the D1cc and D5cc for major blood vessels, as compared with IMPT (p = 0.01).ConclusionAlthough it was comparable to VMAT, IMCIT led to significantly better tumor target dose coverage and conformity than did IMPT. Particle therapy, compared with VMAT, improved thoracic OAR sparing. IMCIT, compared with IMPT, may further improve normal lung and major blood vessel sparing under limited respiratory motion.Electronic supplementary materialThe online version of this article (doi:10.1186/s13014-017-0866-0) contains supplementary material, which is available to authorized users.
This study evaluates the feasibility of the pencil beam scanning technique of carbon ion radiotherapy (CIRT) in the setting of hepatocellular carcinoma (HCC) and establishes the maximum tolerated dose (MTD) calculated by the Local Effect Model version I (LEM‐I) with a dose escalation plan. The escalated relative biological effectiveness‐weighted dose levels included 55, 60, 65, and 70 Gy in 10 fractions. Active motion management techniques were employed, and several measures were applied to mitigate the interplay effect induced by a moving target. CIRT was planned with the LEM‐I‐based treatment planning system and delivered by raster scanning. Offline PET/CT imaging was used to verify the beam range. Offline adaptive replanning was performed whenever required. Twenty‐three patients with a median tumor size of 4.3 cm (range, 1.7–8.5 cm) were enrolled in the present study. The median follow‐up time was 56.1 months (range, 5.7–74.4 months). No dose limiting toxicity was observed until 70 Gy, and MTD had not been reached. No patients experienced radiation‐induced liver disease within 6 months after the completion of CIRT. The overall survival rates at 1, 3, and 5 years were 91.3%, 81.9%, and 67.1% after CIRT, respectively. The local progression‐free survival and progression‐free survival rates at 1, 3 and 5 years were 100%, 94.4%, and 94.4% and 73.6%, 59.2%, and 37.0%, respectively. The raster scanning technique could be used to treat HCC. However, caution should be exercised to mitigate the interplay effect. CIRT up to 70 Gy in 10 fractions over 2 weeks was safe and effective for HCC.
Recently, a growing number of studies focus on partial tumor irradiation to induce the stronger non-target effects. However, the value of partial volume carbon ion radiotherapy (CIRT) targeting hypoxic region of a tumor under imaging guidance as well as its effect of inducing radiation induced abscopal effects (RIAEs) have not been well investigated. Herein, we developed a technique of carbon ion microporous radiation (CI-MPR), guided by 18F-FMISO PET/computerized tomography (CT), for partial volume radiation targeting the hypoxia area of a tumor and investigated its capability of inducing abscopal effects. Tumor-bearing mice were inoculated subcutaneously with breast cancer 4T1 cells into the flanks of both hind legs of mouse. Mice were assigned to three groups: group I: control group with no treatment; group II: carbon ion open field radiation (CI-OFR group) targeting the entire tumor; group III: partial volume carbon ion microporous radiation (CI-MPR group) targeting the hypoxia region. The tumors on the left hind legs of mice were irradiated with single fraction of 20 Gy of CIRT. Mice treated with CI-MPR or CI-OFR showed that significant growth delay on both the irradiated and unirradiated of tumor as compared to the control groups. Tumor regression of left tumor irradiated with CI-OFR was more prominent as compared to the tumor treated with CI-MPR, while the regression of the unirradiated tumor in both CI-MPR and CI-OFR group was similar. Biological-guided CIRT using the newly developed microporous technique targeting tumor hypoxia region could induce robust abscopal effects similar to CIRT covering the entire tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.