The research is taken to integrate the effects of variable selection approaches, as well as sampling techniques, to the performance of a model to predict the financial distress for companies whose stocks are traded on securities exchanges of Vietnam. A firm is financially distressed when its stocks are delisted as requirement from Vietnam Stock Exchange because of making a loss in 3 consecutive years or having accumulated a loss greater than the company’s equity. There are 12 models, constructed differently in feature selection methods, sampling techniques, and classifiers. The feature selection methods are factor analysis and F-score selection, while 3 sets of data samples are chosen by choice-based method with different percentages of financially distressed firms. In terms of classifying technique, logistic regression together with SVM are used in these models. Data are collected from listed firms in Vietnam from 2009 to 2017 for 1, 2 and 3 years before the announcement of their delisting requirement. The experiment’s results highlight the outperformance of the SVM model with F-score selection method in a data sample containing the highest percentage of non-financially distressed firms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.