h Dried blood spots (DBS) can be used in developing countries to alleviate the logistic constraints of using blood plasma specimens for viral load (VL) and HIV drug resistance (HIVDR) testing, but they should be assessed under field conditions. Between 2009 and 2011, we collected paired plasma-DBS samples from treatment-experienced HIV-1-infected adults in Burkina Faso, Cameroon, Senegal, Togo, Thailand, and Vietnam. The DBS were stored at an ambient temperature for 2 to 4 weeks and subsequently at ؊20°C before testing. VL testing was performed on the plasma samples and DBS using locally available methods: the Abbott m2000rt HIV-1 test, generic G2 real-time PCR, or the NucliSENS EasyQ version 1.2 test. In the case of virological failure (VF), i.e., a plasma VL of >1,000 copies/ml, HIVDR genotyping was performed on paired plasma-DBS samples. Overall, we compared 382 plasma-DBS sample pairs for DBS VL testing accuracy. The sensitivities of the different assays in different laboratories for detecting VF using DBS varied from 75% to 100% for the m2000rt test in labs B, C, and D, 91% to 93% for generic G2 realtime PCR in labs A and F, and 85% for the NucliSENS test in lab E. The specificities varied from 82% to 97% for the m2000rt and NucliSENS tests and reached only 60% for the generic G2 test. The NucliSENS test showed good agreement between plasma and DBS VL but underestimated the DBS VL. The lowest agreement was observed for the generic G2 test. Genotyping was successful for 96/124 (77%) DBS tested, and 75/96 (78%) plasma-DBS pairs had identical HIVDR mutations. Significant discrepancies in resistance interpretations were observed in 9 cases, 6 of which were from the same laboratory. DBS can be successfully used as an alternative to blood plasma samples for routine VL and HIVDR monitoring in African and Asian settings. However, the selection of an adequate VL measurement method and the definition of the VF threshold should be considered, and laboratory performance should be monitored.T he increasing availability of antiretroviral treatment (ART) has dramatically contributed to a reduction in mortality and morbidity related to HIV/AIDS in resource-limited countries (RLC). In order to limit the emergence of resistance to antiretroviral drugs, HIV treatment should ideally be accompanied by regular virological monitoring, including viral load (VL) and genotypic drug resistance testing (1). With the recent scaling up of ART in RLC, people from semiurban and rural areas are now also receiving treatment, and recent data have shown variable levels of virological failure (VF) and drug resistance in these areas. In certain settings, VF can be Ͼ20% after 12 months of ART (2-4), stressing the urgent need for improved virological monitoring.In the majority of developing countries with limited resources, monitoring blood plasma VL poses logistical challenges since plasma preparation, storage, and/or shipment requires personnel and laboratory infrastructure that is often lacking. Today, viral load assays still require sophistic...