The peroxyoxalate reaction is one of the most efficient chemiluminescence transformations known and the only system occurring by an intermolecular chemically initiated electron exchange luminescence (CIEEL) mechanism with confirmed high quantum yields. The peroxyoxalate chemiluminescence (PO‐CL) is mainly studied in anhydrous organic medium; however, for bioanalytical application, it should be performed in aqueous media. In the present work, we study the peroxyoxalate system in a binary 1,2‐dimethoxyethane/water mixture with bis(2,4,6‐trichlorophenyl) oxalate (TCPO), bis(4‐methylphenyl) oxalate (BMePO) and bis[2‐(methoxycarbonyl)phenyl] oxalate (DMO), catalyzed by sodium salicylate, in the presence of rhodamine 6G as activator. Reproducible kinetic results are obtained for all systems; emission decay rate constants depend on the salicylate as well as hydrogen peroxide concentration, and the occurrence of a specific base catalysis is verified. Although singlet quantum yields determined are lower than in anhydrous media in comparable conditions, they are still considerably high and adequate for analytical applications. The highest singlet quantum yields are obtained for the “ecologically friendly” derivative DMO indicating that this derivative might be the most adequate substrate for the use of the peroxyoxalate system in bioanalytical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.