We consider a semi-classical version of the Meixner weight depending on two parameters and the associated set of orthogonal polynomials. These polynomials satisfy a three-term recurrence relation. We show that the coefficients appearing in this relation satisfy a discrete Painlevé equation, which is a limiting case of an asymmetric dPIV equation. Moreover, when viewed as functions of one of the parameters, they satisfy one of Chazy's second-degree Painlevé equations, which can be reduced to the fifth Painlevé equation PV.
Abstract. We consider two semiclassical extensions of the Laguerre weight and their associated sets of orthogonal polynomials. These polynomials satisfy a three-term recurrence relation. We show that the coefficients appearing in this relation satisfy discrete Painlevé equations.
We look at some extensions of the Stieltjes-Wigert weight functions. First we replace the variable x by x 2 in a family of weight functions given by Askey in 1989 and we show that the recurrence coefficients of the corresponding orthogonal polynomials can be expressed in terms of a solution of the q-discrete Painlevé III equation q-P III . Next we consider the q-Laguerre or generalized Stieltjes-Wigert weight functions with a quadratic transformation and derive recursive equations for the recurrence coefficients of the orthogonal polynomials. These turn out to be related to the q-discrete Painlevé V equation q-P V . Finally we also consider the little q-Laguerre weight with a quadratic transformation and show that the recurrence coefficients of the orthogonal polynomials are again related to q-P V .
We present an asymmetric q-Painlevé equation. We will derive this using q-orthogonal polynomials with respect to generalized Freud weights: their recurrence coefficients will obey this q-Painlevé equation (up to a simple transformation). We will show a stable method of computing a special solution, which gives the recurrence coefficients. We establish a connection with a-q-P V .
We study the recurrence coefficients of the orthogonal polynomials with respect to a semi-classical extension of the Krawtchouk weight. We derive a coupled discrete system for these coefficients and show that they satisfy the fifth Painlevé equation when viewed as functions of one of the parameters in the weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.