Background
Despite specific restrictions on their production and use, per- and polyfluoralkyl substances (PFAS) are still omnipresent in the environment, including aquatic ecosystems. Most biomonitoring studies have investigated the PFAS concentrations in indigenous organisms, whereas active biomonitoring has only been used sporadically. In the present study, accumulated PFAS concentrations were measured in indigenous fish, European perch (Perca fluviatilis) and European eel (Anguilla anguilla), and in translocated freshwater mussels (Dreissena bugensis and Corbicula fluminea) at 44 sampling locations within the main water basins of Flanders, the northern part of Belgium. Finally, both human health risk and ecological risk were assessed based on accumulated concentrations in fish muscle.
Results
Among locations, ΣPFAS concentrations ranged from 8.56–157 ng/g ww (median: 22.4 ng/g ww) in mussels, 5.22–67.8 ng/g ww (median: 20.8 ng/g ww) in perch, and 5.73–68.8 ng/g ww (median: 22.1 ng/g ww) in eel. Concentrations of PFOA and PFTeDA were higher in mussels compared to fish, whereas for PFDA and PFUnDA the opposite was true. A comparison of concentrations on a wet weight basis between both fish species showed significantly higher PFDoDA, PFTrDA, PFTeDA and PFOA concentrations in eel compared to perch and significantly higher concentrations of PFDA and PFOS in perch. In mussels, PFAS profiles were dominated by PFOA and showed a higher relative contribution of short-chained PFAS, while PFAS profiles in fish were dominated by PFOS. Furthermore, all mussel species clearly occupied a lower trophic level than both fish species, based on a stable isotope analysis.
Conclusions
Biomagnification of PFDA, PFUnDA and PFOS and biodilution of PFOA and PFTeDA were observed. Translocated mussels have been proven suitable to determine which PFAS are present in indigenous fish, since similar PFAS profiles were measured in all biota. Finally, mean PFAS concentrations in fish did pose a human health risk for eel, although tolerable daily intake values for perch were close to the reported daily consumption rates in Belgium and exceeded them in highly contaminated locations. Based on the ecological risk of PFOS, the standard was exceeded at about half of the sampling locations (44% for perch and 58% for eel).
Detrimental effects of chemical pollution -primarily caused by human activities -on aquatic ecosystems, have increasingly gained attention. Because of its hydrophobic qualities, mercury is prone to easily bioaccumulate and biomagnify through the food chain, decreasing biodiversity and eventually also affecting humans. In the present study, accumulated mercury concentrations were measured in muscle and liver tissue of perch (Perca fluviatilis) and European eel (Anguilla anguilla) collected at 26 sampling locations in Flemish (Belgian) waterbodies, allowing a comparison of these species within a variety of environmental situations. Furthermore, effects of size and weight have been assessed, expected to influence accumulation and storage of pollutants. Mercury concentrations in perch ranged up to 1.7 µg g -1 dw (median: 0.29 µg g -1 dw) in muscle and from 0.02 to 0.77 µg g -1 dw (median: 0.11 µg g -1 dw) in liver tissue. For eel, these concentrations were between 0.07 and 1.3 µg g -1 dw (median: 0.39 µg g -1 dw) and between 0.08 and 1.4 µg g -1 dw (median: 0.55 µg g -1 dw) respectively. We found a correlation of accumulated mercury with length in perch, independent of location. Furthermore, a significant difference in accumulated mercury concentrations between the targeted species was measured, with the highest mean concentrations per dry weight in eel liver and muscle tissue. In perch, higher concentrations were found in muscle compared to liver tissue, while in eel, liver tissue showed the highest concentrations. These findings were further considered with concentrations corrected for lipid content, excluding the fat compartment, which is known to a hold negligible portion of the total and methyl mercury concentrations. This confirmed our previous conclusions, except for mercury concentrations in eel. Here there was no longer a significant difference between muscle and liver concentrations. Finally, health risk analyses revealed that only frequent consumption of local eel (> 71 g day -1 ) could pose risks to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.