Under resting conditions, Pink1 knockout cells and cells derived from patients with PINK1 mutations display a loss of mitochondrial complex I reductive activity, causing a decrease in the mitochondrial membrane potential. Analyzing the phosphoproteome of complex I in liver and brain from Pink1(-/-) mice, we found specific loss of phosphorylation of serine-250 in complex I subunit NdufA10. Phosphorylation of serine-250 was needed for ubiquinone reduction by complex I. Phosphomimetic NdufA10 reversed Pink1 deficits in mouse knockout cells and rescued mitochondrial depolarization and synaptic transmission defects in pink(B9)-null mutant Drosophila. Complex I deficits and adenosine triphosphate synthesis were also rescued in cells derived from PINK1 patients. Thus, this evolutionary conserved pathway may contribute to the pathogenic cascade that eventually leads to Parkinson's disease in patients with PINK1 mutations.
Growing axons are guided to their targets by attractive and repulsive cues. In the developing spinal cord, Netrin-1 and Shh guide commissural axons towards the midline. However, the combined inhibition of their activity in commissural axon turning assays does not completely abrogate turning towards floor plate tissue, suggesting that additional guidance cues are present. Here, we show that the prototypic angiogenic factor VEGF is secreted by the floor plate and is a chemoattractant for commissural axons in vitro and in vivo. Inactivation of Vegf in the floor plate or of its receptor Flk1 in commissural neurons causes axon guidance defects, while Flk1-blockade inhibits turning of axons to VEGF in vitro. Similar to Shh and Netrin-1, VEGF-mediated commissural axon guidance requires the activity of Src family kinases. Our results identify VEGF and Flk1 as a novel ligand / receptor pair controlling commissural axon guidance.
Background: PINK1 mutations affect mitochondrial homeostasis and cause Parkinson disease. Results: PINK1 is phosphorylated on the outer mitochondrial membrane. We show here that phosphorylation of serines 228 and 402 increases the capacity of PINK1 to phosphorylate its substrates Parkin and Ubiquitin. Conclusion: PINK1 phosphorylation regulates its kinase activity. Significance: Understanding PINK1 regulation is pivotal to unravel its mitochondrial function.
Our findings indicate that the relevance of reversion for progression risk depends on the MCI subtype. Subtype specificity and longitudinal characterization are required for the reliable identification of individuals at high risk of developing dementia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.