General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
This space reserved for the Editor to give such information as date of receipt of manuscript, date of receipt of revisions (if any), and date of acceptance of paper. In addition, a statement about possible written discussion is appended.
Lightweight bistable deployable structures can be designed to be transportable and reusable. They instantaneously achieve some structural stability when transformed from the compact to the deployed state through a controlled snapthrough, as a result of intended geometric incompatibilities between the beams. Due to their transformable bistable nature their design requires assessing both their non-linear transformation behaviour, as well as their service state in the deployed configuration. The requirement of a low peak force during transformation can be shown to oppose the high stiffness requirement in the deployed state; their design can therefore be formulated as a multi-objective nonlinear optimisation problem. In this contribution, a size and shape optimisation method is elaborated by choosing the best material combinations, the optimal geometry of the structure and beam cross-sections. The originality of this contribution is the use of a multi-objective evolutionary algorithm to structurally optimise bistable scissor structures taking into account the deployed state as well as the transformation phase. First, the method is applied to optimise a single bistable scissor module. Next, a multi-module bistable scissor structure is optimised and the single module and full structure based approaches are critically compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.