The PI(3)K-PKB-FOXO signalling network provides a major intracellular hub for the regulation of cell proliferation, survival and stress resistance. Here we report an unexpected role for FOXO transcription factors in regulating autophagy by modulating intracellular glutamine levels. To identify transcriptional targets of this network, we performed global transcriptional analyses after conditional activation of the key components PI(3)K, PKB/Akt, FOXO3 and FOXO4. Using this pathway approach, we identified glutamine synthetase as being transcriptionally regulated by PI(3)K-PKB-FOXO signalling. Conditional activation of FOXO also led to an increased level of glutamine production. FOXO activation resulted in mTOR inhibition by preventing the translocation of mTOR to lysosomal membranes in a glutamine-synthetase-dependent manner. This resulted in an increased level of autophagy as measured by LC3 lipidation, p62 degradation and fluorescent imaging of multiple autophagosomal markers. Inhibition of FOXO3-mediated autophagy increased the level of apoptosis, suggesting that the induction of autophagy by FOXO3-mediated glutamine synthetase expression is important for cellular survival. These findings reveal a growth-factor-responsive network that can directly modulate autophagy through the regulation of glutamine metabolism.
Hematopoiesis is a highly regulated process resulting in the formation of all blood lineages. Aberrant regulation of phosphatidylinositol-3-kinase (PI3K) signaling has been observed in hematopoietic malignancies, suggesting that regulated PI3K signaling is critical for regulation of blood cell production. An ex vivo differentiation system was used to investigate the role of PI3K and its downstream effector, protein kinase B (PKB/c-akt) in myelopoiesis. PI3K activity was essential for hematopoietic progenitor survival. High PKB activity was found to promote neutrophil and monocyte development, while, conversely, reduction of PKB activity was required to induce optimal eosinophil differentiation. In addition
Bone remodeling is a continuous physiological process that requires constant generation of new osteoblasts from mesenchymal stem cells (MSCs). Differentiation of MSCs to osteoblast requires a metabolic switch from glycolysis to increased mitochondrial respiration to ensure the sufficient energy supply to complete this process. As a consequence of this increased mitochondrial metabolism, the levels of endogenous reactive oxygen species (ROS) rise. In the current study we analyzed the role of forkhead box O3 (FOXO3) in the control of ROS levels in human MSCs (hMSCs) during osteogenic differentiation. Treatment of hMSCs with H2O2 induced FOXO3 phosphorylation at Ser294 and nuclear translocation. This ROS-mediated activation of FOXO3 was dependent on mitogen-activated protein kinase 8 (MAPK8/JNK) activity. Upon FOXO3 downregulation, osteoblastic differentiation was impaired and hMSCs lost their ability to control elevated ROS levels. Our results also demonstrate that in response to elevated ROS levels, FOXO3 induces autophagy in hMSCs. In line with this, impairment of autophagy by autophagy-related 7 (ATG7) knockdown resulted in a reduced capacity of hMSCs to regulate elevated ROS levels, together with a reduced osteoblast differentiation. Taken together our findings are consistent with a model where in hMSCs, FOXO3 is required to induce autophagy and thereby reduce elevated ROS levels resulting from the increased mitochondrial respiration during osteoblast differentiation. These new molecular insights provide an important contribution to our better understanding of bone physiology.
An interstitial deletion on chromosome 4q12 resulting in the formation of the FIP1L1-PDGFRA fusion protein is involved in the pathogenesis of imatinib-sensitive chronic eosinophilic leukemia. The molecular mechanisms underlying the development of disease are largely undefined. Human CD34 + hematopoietic progenitor cells were used to investigate the role of FIP1L1-PDGFRA in modulating lineage development. FIP1L1-PDGFRA induced both proliferation and differentiation of eosinophils, neutrophils, and erythrocytes in the absence of cytokines, which could be inhibited by imatinib. Whereas expression of FIP1L1-PDGFRA in hematopoietic stem cells and common myeloid progenitors induced the formation of multiple myeloid lineages, expression in granulocytemacrophage progenitors induced only the development of eosinophils, neutrophils, and myeloblasts. Deletion of amino acids 30 to 233 in the FIP1L1 gene [FIP1L1(1-29)-PDGFRA] gave rise to an intermediate phenotype, exhibiting a dramatic reduction in the number of erythrocytes. FIP1L1-PDGFRA and FIP1L1(1-29)-PDGFRA both induced the activation of p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) in myeloid progenitors, whereas signal transducers and activators of transcription 5 (STAT5) and protein kinase B/c-akt were only activated by FIP1L1-PDGFRA. Dominant-negative STAT5 partially inhibited FIP1L1-PDGFRA-induced colony formation, whereas combined inhibition of phosphatidylinositol-3-kinase and ERK1/2 significantly reversed FIP1L1-PDGFRA-induced colony formation. Taken together, these results suggest that expression of FIP1L1-PDFGRA in human hematopoietic progenitors induce a myeloproliferative phenotype via activation of multiple signaling molecules including phosphatidylinositol-3-kinase, ERK1/2, and STAT5. [Cancer Res 2007;67(8):3759-66]
Inhibitor of DNA binding (Id) proteins function as inhibitors of members of the basic helix-loop-helix family of transcription factors and have been demonstrated to play an important role in regulating lymphopoiesis. However, the role of these proteins in regulation of myelopoiesis is currently unclear. In this study, we have investigated the role of Id1 and Id2 in the regulation of granulopoiesis. Id1 expression was initially upregulated during early granulopoiesis, which was then followed by a decrease in expression during final maturation. In contrast, Id2 expression was up-regulated in terminally differentiated granulocytes. In order to determine whether Id expression plays a critical role in regulating granulopoiesis, Id1 and Id2 were ectopically expressed in CD34 ؉ cells by retroviral transduction. Our experiments demonstrate that constitutive expression of Id1 inhibits eosinophil development, whereas in contrast neutrophil differentiation was modestly enhanced. Constitutive Id2 expression accelerates final maturation of both eosinophils and neutrophils, whereas inhibition of Id2 expression blocks differentiation of both lineages. Transplantation of 2-microglobulin ؊/؊ nonobese diabetic severe combined immunodeficient (NOD/SCID) mice with CD34 ؉ cells ectopically expressing Id1 resulted in enhanced neutrophil development, whereas ectopic expression of Id2 induced both eosinophil and neutrophil development. IntroductionBasic helix-loop-helix (bHLH) transcription factors have been demonstrated to play a critical role in a wide variety of developmental processes, including neurogenesis, 1 myogenesis, 2 and hematopoiesis. 3 The family of bHLH proteins consists of 3 distinct groups. The first encompasses the E-proteins, which consist of 4 different members: E2-2, HeLa E-box-binding factor (HEB), and the E2a-encoded proteins, E21 and E47. They are ubiquitously expressed, and can both homodimerize and heterodimerize with the second class of bHLH transcription factors, which are cell type-or tissue-specific. 4 This group of tissue-specific transcription factors, also referred to as Class B proteins, consists of several factors that are involved in development of distinct cell types. For example, human achaete-scute homolog-1 (HASH-1), 5 neurogenin, 6 and NeuroD 7 are all involved in neurogenic development, whereas MyoD 8 and myogenin 9,10 are required for normal muscle differentiation. Class B bHLH transcription factors have also been shown to play an important role in hematopoiesis. For example, both stem-cell leukemia/T-cell acute lymphoblastic leukemia-1 (SCL/Tal-1) 3 and lymphoblastic leukemia derived sequence 1 (Lyl-1) 11 are required for normal hematopoiesis and play a role in development of T-cell acute lymphoblastic leukemia.Heterodimerization of bHLH transcription factors results in the formation of a parallel 4-helix bundle that allows both DNA binding domains to associate with the E-box recognition site. 12 Transcriptional activity of these transcription factors is inhibited by a third group of bHLH t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.