Dissolved organic matter (DOM) in surface waters affects the fate and environmental effects of trace metals. We measured variability in the Cd, Cu, Ni, and Zn affinity of 23 DOM samples isolated by reverse osmosis from freshwaters in natural, agricultural, and urban areas. Affinities at uniform pH and ionic composition were assayed at low, environmentally relevant free Cd, Cu, Ni, and Zn activities. The C-normalized metal binding of DOM varied 4-fold (Cu) or about 10-fold (Cd, Ni, Zn) among samples. The dissolved organic carbon concentration ranged only 9-fold in the waters, illustrating that DOM quality is an equally important parameter for metal complexation as DOM quantity. The UV-absorbance of DOM explained metal affinity only for waters receiving few urban inputs, indicating that in those waters, aromatic humic substances are the dominant metal chelators. Larger metal affinities were found for DOM from waters with urban inputs. Aminopolycarboxylate ligands (mainly EDTA) were detected at concentrations up to 0.14 μM and partly explained the larger metal affinity. Nickel concentrations in these surface waters are strongly related to EDTA concentrations (R2=0.96) and this is underpinned by speciation calculations. It is concluded that metal complexation in waters with anthropogenic discharges is larger than that estimated with models that only take into account binding on humic substances.
It has long been recognized that diffusive boundary layers affect the determination of active transport parameters, but this has been largely overlooked in plant physiological research. We studied the short-term uptake of cadmium (Cd), zinc (Zn), and nickel (Ni) by spinach (Spinacia oleracea) and tomato (Lycopersicon esculentum) in solutions with or without metal complexes. At same free ion concentration, the presence of complexes, which enhance the diffusion flux, increased the uptake of Cd and Zn, whereas Ni uptake was unaffected. Competition effects of protons on Cd and Zn uptake were observed only at a very large degree of buffering, while competition of magnesium ions on Ni uptake was observed even in unbuffered solutions. These results strongly suggest that uptake of Cd and Zn is limited by diffusion of the free ion to the roots, except at very high degree of solution buffering, whereas Ni uptake is generally internalization limited. All results could be well described by a model that combined a diffusion equation with a competitive Michaelis-Menten equation. Direct uptake of the complex was estimated to be a major contribution only at millimolar concentrations of the complex or at very large ratios of complex to free ion concentration. The true K m for uptake of Cd 2+ and Zn 2+ was estimated at ,5 nM, three orders of magnitude smaller than the K m measured in unbuffered solutions. Published Michaelis constants for plant uptake of Cd and Zn likely strongly overestimate physiological ones and should not be interpreted as an indicator of transporter affinity.Internalization of metals by biota is traditionally described by Michaelis-Menten kinetics (Wilkinson and Buffle, 2004). The K m corresponds to the concentration in solution at which the uptake is one-half of the maximal uptake, F max . The Michaelis-Menten equation relates the uptake flux, F, to the free ion concentration at the site of uptake, [M] s :If diffusion of a metal across a diffusive boundary layer adjacent to the roots is the rate-limiting step for uptake, the concentration at the site of uptake will be lower than that in the bulk solution. As a result, diffusion limitations result in an overestimate of the K m , if the concentration at the root surface is assumed to be the same as in the bulk solution, as is usually done. This bias in K m has been discussed in detail by Winne (1973) and has, for instance, been demonstrated experimentally for uptake of Glc in rabbit jejunum (Thomson and Dietschy, 1980) and for uptake of several sugars, amino acids, and bile acids in rat ileum (Wilson and Dietschy, 1974).Models used to predict ion availability and toxicity of metals by plants usually rely on the assumption that uptake is controlled by the free metal ion activity and the activity of competing ions in the bulk solution. For instance, the biotic ligand model (BLM), originally developed to predict metal toxicity to aquatic organisms, assumes that toxicity of an ion is mitigated by the presence of competing ions that bind on the biotic ligand (Paqu...
The technique of diffusive gradients in thin films (DGT) has been shown to be a promising tool to assess metal uptake by plants in a wide range of soils. With the DGT technique, diffusion fluxes of trace metals through a diffusion layer towards a resin layer are measured. The DGT technique therefore mimics the metal uptake by plants if uptake is limited by diffusion of the free ion to the plant roots, which may not be the case at high metal supply. This study addresses the capability of DGT to predict cadmium (Cd) uptake by plants at varying Cd supply. To test the performance of DGT in such conditions, we used the chloride (Cl − ) enhancement effect, i.e. the increase in Cd solution concentrationsdue to chloride complexation of Cd-and Cd uptake with increasing Cl − concentrations, as previously characterized in pot, field and solution culture experiments. The uptake of Cd by spinach was assessed in soil amended with Cd (0.4-10.5 mg Cd kg −1 ) and NaCl (up to 120 mM) in a factorial design. Treatments with NaNO 3 were included as a reference to correct for ionic strengths effects. The effect of Cl − on the shoot Cd concentrations was significant at background Cd but diminished with increasing soil Cd. Increasing Cl − concentrations increased the root area based Cd uptake fluxes by more than a factor of 5 at low soil Cd, but had no significant effect at high soil Cd. Short-term uptake of Cd in spinach from nutrient solutions confirmed these trends. In contrast, increasing Cl − concentrations increased the DGT measured fluxes by a factor of 5 at all Cd levels. As a result, DGT fluxes were able to explain soil Cl − effects on plant Cd concentrations at low but not at high Cd supply. This example illustrates under which conditions DGT mimics trace metal bioavailability. If biouptake is controlled by diffusive limitations, DGT should be a successful tool for predicting ion uptake across different conditions.
The Free Ion Activity Model (FIAM) predicts that metal uptake in biota is related to the free ion activity in the external solution and that metal complexes do not contribute. However, studies with plants have shown that labile metal complexes enhance metal bioavailability when the uptake is rate-limited by transport of the free ion in solution to the uptake site. Here, the role of labile complexes of Cd on metal bioavailability was assessed using Caco-2 cells, the cell model for intestinal absorption. At low Cd(2+) concentration (1 nM), the CdCl(n)(2-n) complexes contributed to the uptake almost to the same extent as the free ion. At large Cd(2+) concentration (10 μM), the contribution of the complexes was much smaller. At constant Cd(2+) concentration, Cd intake in the cells from solutions containing synthetic ligands such as EDTA increased as the dissociation rate of the cadmium complexes increased, and correlated well with the Cd diffusion flux in solution measured with the Diffusive Gradient in Thin Films technique (DGT). The Cd intake fluxes in the cells were well predicted assuming that the specific uptake is limited by diffusion of the free Cd(2+) ion to the cell surface. Our results underline that speciation of Cd has a major effect on its uptake by intestinal cells, but the availability is not simply related to the free ion concentration. Labile complexes of Cd enhance metal bioavailability in these cells, likely by alleviating diffusive limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.