Age-related macular degeneration (AMD) is the most frequent cause of blindness in the elderly. There is evidence that nutrition, inflammation and genetic risk factors play an important role in the development of AMD. Recent studies suggest that the composition of the intestinal microbiome is associated with metabolic diseases through modulation of inflammation and host metabolism. To investigate whether compositional and functional alterations of the intestinal microbiome are associated with AMD, we sequenced the gut metagenomes of patients with AMD and controls. The genera Anaerotruncus and Oscillibacter as well as Ruminococcus torques and Eubacterium ventriosum were relatively enriched in patients with AMD, whereas Bacteroides eggerthii was enriched in controls. Patient’s intestinal microbiomes were enriched in genes of the L-alanine fermentation, glutamate degradation and arginine biosynthesis pathways and decreased in genes of the fatty acid elongation pathway. These findings suggest that modifications in the intestinal microbiome are associated with AMD, inferring that this common sight threatening disease may be targeted by microbiome-altering interventions.
PurposeTo compare the quality of four OCT-angiography(OCT-A) modules.MethodThe retina of nineteen healthy volunteers were scanned with four OCT-devices (Topcon DRI-OCT Triton Swept-source OCT, Optovue RTVue-XR, a prototype Spectralis OCT2, Heidelberg-Engineering and Zeiss Cirrus 5000-HD-OCT). The device-software generated en-face OCT-A images of the superficial (SCP) and deep capillary plexuses (DCP) were evaluated and scored by 3 independent retinal imaging experts. The SCP vessel density was assessed using Angiotool-software. After the inter-grader reliability assessment, a consensus grading was performed and the modules were ranked based on their scoring.ResultsThere was no significant difference in the vessel density among the modules (Zeiss 48.7±4%, Optovue 47.9±3%, Topcon 48.3±2%, Heidelberg 46.5±4%, p = 0.2). The numbers of discernible vessel-bifurcations differed significantly on each module (Zeiss 2±0.9 bifurcations, Optovue 2.5±1.2, Topcon 1.3±0.7 and Heidelberg 0.5±0.6, p≤0.001). The ranking of each module differed depending on the evaluated parameter. In the overall ranking, the Zeiss module was superior and in 90% better than the median (Bonferroni corrected p-value = 0.04). Optovue was better than the median in 60%, Topcon in 40% and Heidelberg module in 10%, however these differences were not statistically significant.ConclusionEach of the four evaluated OCT-A modules had particular strengths, which differentiated it from their competitors.
Age-related macular degeneration (AMD) is a leading cause of severe vision loss in the aged population. The etiology of AMD is multifactorial including nutritional factors, genetic variants mainly in the complement pathway, environmental risk factors and alterations in the intestinal microbiome. However, it remains unexplored whether there is an interdependency of these factors leading to the development of AMD. To investigate this issue, a shotgun metagenomics analysis of 57 neovascular AMD and 58 healthy controls as well as of 16 complement C3-deficient mice and 16 wildtypes was performed. Whereas the class Negativicutes was more abundant in patients, the genus Oscillibacter and species Bacteroides had a significantly higher prevalence in persons without AMD. Similar taxonomic features were identified that distinguished wildtype mice from C3-deficient mice. Moreover, several purine signaling pathways were associated with both, neovascular AMD and C3 deficiency. While SNPs within the complement factor B gene were more abundant in controls, SNPs within the high temperature requirement A serine peptidase 1 and complement factor H (CFH) genes were associated with neovascular AMD. Using a classification model, Negativicutes was identified as a potential biomarker for AMD and furthermore, it positively correlated with CFH. This study suggests an association between the intestinal microbiome and the complement system in neovascular AMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.