Owing to the present global biodiversity crisis, the biodiversity-stability relationship and the effect of biodiversity on ecosystem functioning have become major topics in ecology. Biodiversity is a complex term that includes taxonomic, functional, spatial and temporal aspects of organismic diversity, with species richness (the number of species) and evenness (the relative abundance of species) considered among the most important measures. With few exceptions (see, for example, ref. 6), the majority of studies of biodiversity-functioning and biodiversity-stability theory have predominantly examined richness. Here we show, using microbial microcosms, that initial community evenness is a key factor in preserving the functional stability of an ecosystem. Using experimental manipulations of both richness and initial evenness in microcosms with denitrifying bacterial communities, we found that the stability of the net ecosystem denitrification in the face of salinity stress was strongly influenced by the initial evenness of the community. Therefore, when communities are highly uneven, or there is extreme dominance by one or a few species, their functioning is less resistant to environmental stress. Further unravelling how evenness influences ecosystem processes in natural and humanized environments constitutes a major future conceptual challenge.
Summary Measuring the microbial diversity in natural and engineered environments is important for ecosystem characterization, ecosystem monitoring and hypothesis testing. Although the conventional assessment through single marker gene surveys has resulted in major advances, the complete procedure remains slow (i.e. weeks to months), labour‐intensive and susceptible to multiple sources of laboratory and data processing bias. Growing interest, in highly resolved, temporal surveys of microbial diversity, necessitates rapid, inexpensive and robust analytical platforms that require limited computational effort. Here, we demonstrate that sensitive single‐cell measurements of phenotypic attributes, obtained via flow cytometry, can provide fast (i.e. within minutes) first‐line assessments of microbial diversity dynamics, without demanding extensive sample preparation and downstream data processing. We developed a data processing pipeline that fits bivariate kernel density functions to phenotypic parameter combinations of an entire microbial community and concatenates them to a single one‐dimensional phenotypic fingerprint. By calculating established diversity metrics from such phenotypic fingerprints, we construct an alternative interpretation of the microbial diversity that incorporates distinct phenotypic traits underlying cell‐to‐cell heterogeneity (i.e. morphology and nucleic acid content). Based on a detailed longitudinal study of a highly dynamic microbial ecosystem, our approach delivered temporal alpha diversity profiles that strongly correlated with the reference diversity, as estimated by 16S rRNA amplicon sequencing. This strongly suggests that the distribution of a limited amount of phenotypic features within a microbial community already provides sufficient resolving power for the measurement of diversity dynamics at the species level. We present a fast, robust analysis method for monitoring the microbial biodiversity of natural and engineered ecosystems that correlates well with the conventional marker gene surveys. Our work has both applied and fundamental implications that stretch from ecosystem monitoring and studies on microbial community dynamics, to supervised sampling strategies. Furthermore, our approach offers perspectives for the development of online and in situ monitoring systems for microbial ecosystems.
High ethanol tolerance is an exquisite characteristic of the yeast Saccharomyces cerevisiae, which enables this microorganism to dominate in natural and industrial fermentations. Up to now, ethanol tolerance has only been analyzed in laboratory yeast strains with moderate ethanol tolerance. The genetic basis of the much higher ethanol tolerance in natural and industrial yeast strains is unknown. We have applied pooled-segregant whole-genome sequence analysis to map all quantitative trait loci (QTL) determining high ethanol tolerance. We crossed a highly ethanol-tolerant segregant of a Brazilian bioethanol production strain with a laboratory strain with moderate ethanol tolerance. Out of 5974 segregants, we pooled 136 segregants tolerant to at least 16% ethanol and 31 segregants tolerant to at least 17%. Scoring of SNPs using whole-genome sequence analysis of DNA from the two pools and parents revealed three major loci and additional minor loci. The latter were more pronounced or only present in the 17% pool compared to the 16% pool. In the locus with the strongest linkage, we identified three closely located genes affecting ethanol tolerance: MKT1, SWS2, and APJ1, with SWS2 being a negative allele located in between two positive alleles. SWS2 and APJ1 probably contained significant polymorphisms only outside the ORF, and lower expression of APJ1 may be linked to higher ethanol tolerance. This work has identified the first causative genes involved in high ethanol tolerance of yeast. It also reveals the strong potential of pooled-segregant sequence analysis using relatively small numbers of selected segregants for identifying QTL on a genome-wide scale.
Summary. We present a semiparametric statistical model for the probabilistic index which can be defined as P .Y Y Å /, where Y and Y Å are independent random response variables associated with covariate patterns X and X Å respectively. A link function defines the relationship between the probabilistic index and a linear predictor. Asymptotic normality of the estimators and consistency of the covariance matrix estimator are established through semiparametric theory. The model is illustrated with several examples, and the estimation theory is validated in a simulation study.
Although the response of plants exposed to severe drought stress has been studied extensively, little is known about how plants adapt their growth under mild drought stress conditions. Here, we analyzed the leaf and rosette growth response of six Arabidopsis (Arabidopsis thaliana) accessions originating from different geographic regions when exposed to mild drought stress. The automated phenotyping platform WIWAM was used to impose stress early during leaf development, when the third leaf emerges from the shoot apical meristem. Analysis of growth-related phenotypes showed differences in leaf development between the accessions. In all six accessions, mild drought stress reduced both leaf pavement cell area and number without affecting the stomatal index. Genome-wide transcriptome analysis (using RNA sequencing) of early developing leaf tissue identified 354 genes differentially expressed under mild drought stress in the six accessions. Our results indicate the existence of a robust response over different genetic backgrounds to mild drought stress in developing leaves. The processes involved in the overall mild drought stress response comprised abscisic acid signaling, proline metabolism, and cell wall adjustments. In addition to these known severe drought-related responses, 87 genes were found to be specific for the response of young developing leaves to mild drought stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.