In normal circumstances, the Bcl-2 family dutifully governs when cells die. However, the rules of engagement between the pro- and antiapoptotic family members are still contested, and how Bax is transformed from a cytosolic monomer to an outer mitochondrial membrane-permeabilizing oligomer is unclear. With fluorescence techniques and an in vitro system, the combination of tBid and Bax produced dramatic membrane permeabilization. The membrane is not a passive partner in this process beause membranes are required for the protein-protein interactions to occur. Simultaneous measurements of these interactions revealed an ordered series of steps required for outer membrane permeabilization: (1) tBid rapidly binds to membranes, where (2) tBid interacts with Bax, causing (3) Bax insertion into membranes and (4) oligomerization, culminating in (5) membrane permeabilization. Bcl-XL prevents membrane-bound tBid from binding Bax. Bad releases tBid from Bcl-XL, restoring both tBid binding to Bax and membrane permeabilization.
Although Bcl-XL and Bax are structurally similar, activated Bax forms large oligomers that permeabilize the outer mitochondrial membrane, thereby committing cells to apoptosis, whereas Bcl-XL inhibits this process. Two different models of Bcl-XL function have been proposed. In one, Bcl-XL binds to an activator, thereby preventing Bax activation. In the other, Bcl-XL binds directly to activated Bax. It has been difficult to sort out which interaction is important in cells, as all three proteins are present simultaneously. We examined the mechanism of Bax activation by tBid and its inhibition by Bcl-XL using full-length recombinant proteins and measuring permeabilization of liposomes and mitochondria in vitro. Our results demonstrate that Bcl-XL and Bax are functionally similar. Neither protein bound to membranes alone. However, the addition of tBid recruited molar excesses of either protein to membranes, indicating that tBid activates both pro- and antiapoptotic members of the Bcl-2 family. Bcl-XL competes with Bax for the activation of soluble, monomeric Bax through interaction with membranes, tBid, or t-Bid-activated Bax, thereby inhibiting Bax binding to membranes, oligomerization, and membrane permeabilization. Experiments in which individual interactions were abolished by mutagenesis indicate that both Bcl-XL–tBid and Bcl-XL–Bax binding contribute to the antiapoptotic function of Bcl-XL. By out-competing Bax for the interactions leading to membrane permeabilization, Bcl-XL ties up both tBid and Bax in nonproductive interactions and inhibits Bax binding to membranes. We propose that because Bcl-XL does not oligomerize it functions like a dominant-negative Bax in the membrane permeabilization process.
Bcl‐2 inhibits apoptosis by regulating the release of cytochrome c and other proteins from mitochondria. Oligomerization of Bax promotes cell death by permeabilizing the outer mitochondrial membrane. In transfected cells and isolated mitochondria, Bcl‐2, but not the inactive point mutants Bcl‐2‐G145A and Bcl‐2‐V159D, undergoes a conformation change in the mitochondrial membrane in response to apoptotic agonists such as tBid and Bax. A mutant Bcl‐2 with two cysteines introduced at positions predicted to result in a disulfide bond that would inhibit the mobility of α5–α6 helices (Bcl‐2‐S105C/E152C) was only active in a reducing environment. Thus, Bcl‐2 must change the conformation to inhibit tBid‐induced oligomerization of integral membrane Bax monomers and small oligomers. The conformationally changed Bcl‐2 sequesters the integral membrane form of Bax. If Bax is in excess, apoptosis resumes as Bcl‐2 is consumed by the conformational change and in complexes with Bax. Thus, Bcl‐2 functions as an inhibitor of mitochondrial permeabilization by changing conformation in the mitochondrial membrane to bind membrane‐inserted Bax monomers and prevent productive oligomerization of Bax.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.