Objective: Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease without an effective pharmaceutical treatment. Genetic studies have proved the involvement of smooth muscle phenotype switch in the development of AAA. The alpha subunit of the heterotrimeric G stimulatory protein (Gsα) mediates receptorstimulated production of cyclic adenosine monophosphate (cAMP). However, the role of smooth muscle Gsα in AAA formation remains unknown. Approach and results: In this study, mice with knockout of smooth muscle-specific Gsα (Gsα SMKO ) were generated by cross-breeding Gsα flox/flox mice with SM22-CreER T2 transgenic mice, induced in adult mice by tamoxifen treatment. Gsα deficiency induced a smooth muscle phenotype switch from a contractile to a synthetic state. Mechanically, Gsα deletion reduced cAMP level and increased the level of human antigen R (HuR), which binds with the adenylate uridylate-rich elements of the 3′ untranslated region of Krüppel-like factor 4 (KLF4) mRNA, thereby increasing the stability of KLF4. Moreover, genetic knockdown of HuR or KLF4 rescued the phenotype switch in Gsα-deficient smooth muscle cells. Furthermore, with acute infusion of angiotensin II, the incidence of AAA was markedly higher in ApoE −/− /Gsα SMKO than ApoE −/− /Gsα flox/flox mice and induced increased elastic lamina degradation and aortic expansion. Finally, the levels of Gsα and SM α-actin were significantly lower while those of HuR and KLF4 were higher in human AAA samples than adjacent nonaneurysmal aortic sections. Conclusions: Gsα may play a protective role in AAA formation by regulating the smooth muscle phenotype switch and could be a potential therapeutic target for AAA disease.is often accompanied by downregulation of multiple contractile proteins in aortic smooth muscle cells (SMCs) [4,5]. Furthermore, aortic intimal layer injury and inflammatory cell infiltration participate in the aneurysm progression via complicated mechanisms such as cytokine secretion and increased reactive oxygen species levels [3,6]. Finally, vascular collagen and elastin extracellular matrix is thought to undergo degradation by matrix metalloproteinases and contribute to AAA
Endothelial cell leakage occurs in several diseases. Intracellular junctions and transcellular fashion are involved. The definite regulatory mechanism is complicated and not fully elucidated. The alpha subunit of the heterotrimeric G-stimulatory protein (Gsα) mediates receptor-stimulated production of cyclic adenosine monophosphate (cAMP). However, the role of Gsα in the endothelial barrier remains unclear. In this study, mice with knockout of endothelial-specific Gsα (GsαECKO) were generated by crossbreeding Gsαflox/flox mice with Cdh5-CreERT2 transgenic mice, induced in adult mice by tamoxifen treatment. GsαECKO mice displayed phenotypes of edema, anemia, hypoproteinemia and hyperlipoproteinemia, which indicates impaired microvascular permeability. Mechanistically, Gsα deficiency reduces the level of endothelial plasmalemma vesicle-associated protein (PLVAP). In addition, overexpression of Gsα increased phosphorylation of cAMP response element-binding protein (CREB) as well as the mRNA and protein levels of PLVAP. CREB could bind to the CRE site of PLVAP promoter and regulate its expression. Thus, Gsα might regulate endothelial permeability via cAMP/CREB-mediated PLVAP expression.
Post-ischemic angiogenesis is a vital pathophysiological process in diseases such as peripheral arterial disease (PAD), heart ischemia, and diabetic retinopathy. The molecular mechanisms of post-ischemic angiogenesis are complicated and not fully elucidated. The G protein stimulatory alpha subunit (Gsα) is essential for hormone-stimulated cyclic adenosine monophosphate (cAMP) production and is an important regulator for many physiological processes. In the present study, we investigated the role of endothelial Gsα in post-ischemic angiogenesis by generating adult mice with endothelial-specific Gsα deficiency (GsαECKO). GsαECKO mice had impaired blood flow recovery after hind limb ischemic injury, and reduced neovascularization in allograft transplanted tumors. Mechanically, Gsα could regulate the expression of angiogenic factor with G patch and FHA domains 1 (AGGF1) through cAMP/CREB pathway. AGGF1 plays a key role in angiogenesis and regulates endothelial cell proliferation as well as migration. Knockdown of CREB or mutation of the CRE site on the AGGF1 promoter led to reduced AGGF1 promoter activity. In addition, knockdown of AGGF1 reduced the proangiogenic effect of Gsα in endothelial cells, and overexpression of AGGF1 reversed the impaired angiogenesis in GsαECKO mice in vivo. The finding may prove useful in designing new therapeutic targets for treatments of post-ischemic angiogenesis-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.