Magnetorheological (MR) brake is a sort of electromagnetic brake that uses the controllable output characteristics of MR fluid for braking. In this paper, an MR brake with a double brake disc was developed to improve the braking performance of conventional MR brakes. The effective damping gaps were increased from the traditional two sections to four sections by increasing the single brake disc of the conventional MR brake to a double brake disc. By reasonably arranging the non-magnetic sleeve inside the MR brake, the magnetic flux lines were better guided to the effective damping gaps, which increased the utilization rate of the magnetic field, effectively enhanced the braking performance, and also reduced the braking power consumption. The structure and working principle of the MR brake with double brake disc were discussed. The magnetic field of the proposed MR brake was analyzed by ANSYS software, and the theoretical result of braking performance was obtained by combining the established mechanical model. The braking performance test rig was setup to investigate the torque performance of the MR brake. The experimental results show that the maximum braking torque is 18.01 N·m at the applied current of 2.0 A and the rotational speed of 400 r·min−1, and the simulation values are basically verified. In addition, the results indicate that the constant torque characteristic of the MR brake is relatively stable, and the torque is almost unaffected by the changes of rotational speed. The results can provide some guidance for the structural design and optimization of the MR actuators.
In order to solve the problems of low magnetic field utilization rate and low volume-torque ratio of the traditional magnetorheological (MR) brake under a volume constraint, a rotary MR brake with multiple fluid flow channels was proposed. The magnetic flux was guided into the external axial fluid flow channel by inserting a non-magnetic ring in the middle of the magnetic conduction sleeves which could improve the magnetic circuit structure greatly, the working area where the MR brake producing rheological effect was increased, and the effective damping gaps were also increased from two sections to four sections. The working principle of rotary MR brake was expounded and torque mathematical model was also deduced. The electromagnetic field was modeled and the distribution of magnetic flux density in multiple fluid flow channels was analyzed using finite element method. The prototypes of initial and optimal design were fabricated by using the obtained optimal geometric parameters. An experimental test system was setup to investigate the dynamic performance of the proposed rotary MR brake. The experimental results show that the maximum braking torque and torque ratio of the optimal MR brake are increased by 13.5% and 2.3% compared with the initial MR brake at the applied current of 1.8 A, respectively. At the same time, the variation trend of experimental and simulation results is basically consistent, and the rotational speed has almost no effect on the torque performance, which is conducive to the application of MR brakes under different working conditions. INDEX TERMS rotary MR brake; multiple fluid flow channels; optimal design; braking torque
Magnetorheological (MR) damper performance is evaluated only by single-field analysis in the design process, which can easily lead to larger design errors. Based on this, a simulation method of MR damper considering multiphysics coupling was proposed. According to a certain automobile shock absorber requirement, an MR damper suitable for automobile suspension was designed. The mechanical model, electromagnetic field model, flow field model, and structural stress field model of the MR damper were deduced and established. To investigate the damping performance of the MR damper more accurately, the multiphysics coupling simulation model was established by COMSOL software, and coupling analysis of the electromagnetic field, flow field, and structural stress field was also carried out. The static magnetic field characteristics, dynamic flow field characteristics, stress distribution, and dynamic performance of the proposed MR damper under the action of multiphysics coupling were obtained. The simulation results show that the damping force is 1134.6 N, and the damping adjustable coefficient is 9.1 at an applied current of 1.4 A. A test system was established to analyze the dynamic performance of the MR damper, and the simulation results were compared with the experimental results. The results show that the simulated and experimental results have the same change rule. Moreover, the damping force increases with the applied current, and different external excitations have little effect on the damping force. The damper can output appropriate damping force and has a wide adjustable damping range. The experimental results illustrate that the damping force is 1200.0 N, and the damping adjustable coefficient is 10.1 when the current is 1.4 A. The error between simulation and experiment of the damping force and damping adjustable coefficient is only 5.5% and 9.9%, respectively.
In order to improve the braking performance of magnetorheological (MR) brake, a new MR brake with parallel multi-channel structure was developed in this paper. The three layers of axial damping gaps in the MR brake were utilized by using of the magnetic conductivity of the material, and the double excitation coils was also adopted to effectively improve the braking performance. The braking torque and temperature characteristics were analyzed theoretically, and the electromagnetic field and temperature field were simulated and verified. Braking performance and temperature characteristics of the parallel multi-channel MR brake were tested, and the torque, braking time and temperature characteristics of the MR brake were obtained. The test results show that under the condition of constant rotational speed of 700 r/min and applied current of 2 A, the maximum torque can reach 26.25 N⋅m, and the temperature rises from 18.3 °C to 58.01 °C within 20 s. Meanwhile, the braking time is about 1.63 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.