Sugarcane mosaic disease is mainly caused by the sugarcane mosaic virus (SCMV), which can significantly reduce stalk yield and sucrose content of sugarcane in the field. Coat protein mediated protection (CPMP) is an effective strategy to improve virus resistance. A 2-year field study was conducted to compare five independent transgenic sugarcane lines carrying the SCMV-CP gene (i.e., B2, B36, B38, B48, and B51) with the wild-type parental clone Badila (WT). Agronomic performance, resistance to SCMV infection, and transgene stability were evaluated and compared with the wild-type parental clone Badila (WT) at four experimental locations in China across two successive seasons, i.e., plant cane (PC) and 1st ratoon cane (1R). All transgenic lines derived from Badila had significantly greater tons of cane per hectare (TCH) and tons of sucrose per hectare (TSH) as well as lower SCMV disease incidence than those from Badila in the PC and 1R crops. The transgenic line B48 was highly resistant to SCMV with less than 3% incidence of infection. The recovery phenotype of transgenic line B36 was infected soon after virus inoculation, but the subsequent leaves showed no symptoms of infection. Most control plants developed symptoms that persisted and spread throughout the plant with more than 50% incidence. B48 recorded an average of 102.72 t/ha, which was 67.2% more than that for Badila. The expression of the transgene was stable over many generations with vegetative propagation. These results show that SCMV-resistant transgenic lines derived from Badila can provide resistant germplasm for sugarcane breeding and can also be used to study virus resistance mechanisms. This is the first report on the development and field performance of transgenic sugarcane plants that are resistant to SCMV infection in China.
Background Viruses are infectious pathogens, and plant virus epidemics can have devastating consequences to crop yield and quality. Sugarcane mosaic virus (SCMV, belonging to family Potyviridae) is one of the leading pathogens that affect the sugarcane crop every year. To combat the pathogens’ attack, plants generate reactive oxygen species (ROS) as the first line of defense whose sophisticated balance is achieved through well-organized antioxidant scavenging pathways. Results In this study, we investigated the changes occurring at the transcriptomic level of ROS associated and ROS detoxification pathways of SCMV resistant (B-48) and susceptible (Badila) sugarcane genotypes, using Saccharum spontaneum L. genome assembly as a reference genome. Transcriptomic data highlighted the significant upregulation of ROS producing genes such as NADH oxidase, malate dehydrogenase and flavin-binding monooxygenase, in Badila genotype after SCMV pathogenicity. To scavenge the ROS, the Badila genotype illustrated a substantial enhancement of antioxidants i.e. glutathione s-transferase (GST), as compared to its resistant counterpart. GST is supposed to be a key indicator of pathogen attacks on the plant. A remarkably lower GST expression in B-48, as compared to Badila, indicated the development of resistance in this genotype. Additionally, we characterized the critical transcription factors (TFs) involved in endowing resistance to B-48. Among these, WRKY, AP2, NAC, bZIP, and bHLH showed enhanced expression in the B-48 genotype. Our results also confirmed the linkage of transcriptomic data with the enzymatic and qPCR data. The estimation of enzymatic activities for superoxide dismutase, catalase, ascorbate peroxidase, and phenylalanine ammonia-lyase supported the transcriptomic data and evinced higher resistance in B-48 genotype. Conclusion The current study supported the efficiency of the B-48 genotype under SCMV infection. Moreover, comparative transcriptomic data has been presented to highlight the role of significant transcription factors conferring resistance to this genotype. This study provides an in-depth knowledge of the expression profiling of defense mechanisms in sugarcane.
The total sugarcane (Saccharum L.) production has increased worldwide; however, the rate of growth is lower compared with other major crops, mainly due to a plateauing of genetic gain. Genomic selection (GS) has proven to substantially increase the rate of genetic gain in many crops. To investigate the utility of GS in future sugarcane breeding, a field trial was conducted using 432 sugarcane clones using an augmented design with two replications. Two major diseases in sugarcane, brown and orange rust (BR and OR), were screened artificially using whorl inoculation method in the field over two crop cycles. The genotypic data were generated through target enrichment sequencing technologies. After filtering, a set of 8,825 single nucleotide polymorphic markers were used to assess the prediction accuracy of multiple GS models. Using fivefold cross-validation, we observed GS prediction accuracies for BR and OR that ranged from 0.28 to 0.43 and 0.13 to 0.29, respectively, across two crop cycles and combined cycles. The prediction ability further improved by including a known major gene for resistance to BR as a fixed effect in the GS model. It also substantially reduced the minimum number of markers and training population size required for GS. The nonparametric GS models outperformed the parametric GS suggesting that nonadditive genetic effects could contribute genomic sources underlying BR and OR. This study demonstrated that GS could potentially predict the genomic estimated breeding value for selecting the desired germplasm for sugarcane breeding for disease resistance.
Sugarcane mosaic virus (SCMV), belonging to genus Potyvirus, family Potyviridae, is a severe pathogen of several agricultural important crops, mainly sugarcane. Due to complex nature of sugarcane, the effect of SCMV pathogenicity on sugarcane photosynthetic systems remains to be explored. In this study, we investigated the alterations occurring in the photosynthetic system in the sugarcane genotypes at the cytopathological, physiological and biological, transcriptome and proteome level. We generated the transcriptome assembly of two genotypes (susceptible Badila and resistant B-48) using Saccharum spontaneum L. as a reference genome. RNA-sequencing data revealed the significant upregulation of NAD(P) H, RubisCO, oxygen-evolving complex, chlorophyll a and b binding protein, Psb protein family, PSI reaction center subunit II, and IVgenes in B-48, as compared to its counterparts. Upregulated genes in B-48 are associated with various processes such as stability and assembly of photosystem, protection against photoinhibition and antiviral defense. The expression pattern of differentially abundant genes were further verified at the proteomics level. Overall, differentially expressed genes/ proteins (DEGs/DEPs) showed the consistency of expression at both transcriptome and proteome level in B-48 genotype. Comprehensively, these data supported the efficiency of B-48 genotype under virus infection conditions and provided a better understanding of the expression pattern of photosynthesis-related genes in sugarcane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.