Light Field (LF) imaging empowers many attractive applications by simultaneously recording spatial and angular information of light rays. In order to meet the challenges of LF storage and transmission, many view reconstruction-based LF compression methods are put forward. However, occlusion issue and under-exploitation of LF rich structure information limit the view reconstruction qualities, which further influence LF compression efficiency. In order to alleviate these problems, in this paper, we propose a geometry-aware view reconstruction network for LF compression. In our method, only sparsely-sampled LF views are encoded, which are further used as priors to reconstruct the un-sampled LF views at the decoder side. The proposed reconstruction process contains two stages including geometry-aware reconstruction and texture refinement. The geometry-aware reconstruction stage utilizes a multi-stream framework, which can fully explore LF spatial-angular, location and geometry information. The texture refinement stage can adequately fuse such rich LF information to further improve LF reconstruction quality. Comprehensive experimental results validate the superiority of the proposed method. The rate-distortion performance and the perceptual quality of reconstructed views further demonstrate that the proposed method can save more bitrate while increasing LF reconstruction quality.
Light Field (LF) imaging empowers many attractive applications by simultaneously recording spatial and angular information of light rays. In order to meet the challenges of LF storage and transmission, many view reconstruction-based LF compression methods are put forward. However, occlusion issue and under-exploitation of LF rich structure information limit the view reconstruction qualities, which further influence LF compression efficiency. In order to alleviate these problems, in this paper, we propose a geometry-aware view reconstruction network for LF compression. In our method, only sparsely-sampled LF views are encoded, which are further used as priors to reconstruct the un-sampled LF views at the decoder side. The proposed reconstruction process contains two stages including geometry-aware reconstruction and texture refinement. The geometry-aware reconstruction stage utilizes a multi-stream framework, which can fully explore LF spatial-angular, location and geometry information. The texture refinement stage can adequately fuse such rich LF information to further improve LF reconstruction quality. Comprehensive experimental results validate the superiority of the proposed method. The rate-distortion performance and the perceptual quality of reconstructed views further demonstrate that the proposed method can save more bitrate while increasing LF reconstruction quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.