The recent reformulation of the coupled-wave method by Lalanne and Morris [J. Opt. Soc. Am. A 13, 779 (1996)] and by Granet and Guizal [J. Opt. Soc. Am. A 13, 1019 (1996)], which dramatically improves the convergence of the method for metallic gratings in TM polarization, is given a firm mathematical foundation in this paper. The new formulation converges faster because it uniformly satisfies the boundary conditions in the grating region, whereas the old formulations do so only nonuniformly. Mathematical theorems that govern the factorization of the Fourier coefficients of products of functions having jump discontinuities are given. The results of this paper are applicable to any numerical work that requires the Fourier analysis of products of discontinuous periodic functions.
Two recursive and numerically stable matrix algorithms for modeling layered diffraction gratings, the S-matrix algorithm and the R-matrix algorithm, are systematically presented in a form that is independent of the underlying grating models, geometries, and mountings. Many implementation variants of the algorithms are also presented. Their physical interpretations are given, and their numerical stabilities and efficiencies are discussed in detail. The single most important criterion for achieving unconditional numerical stability with both algorithms is to avoid the exponentially growing functions in every step of the matrix recursion. From the viewpoint of numerical efficiency, the S-matrix algorithm is generally preferred to the R-matrix algorithm, but exceptional cases are noted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.