The effect of regurgitant from Leptinotarsa decemlineata Say larvae on wound-induced responses was studied using two plant species, Solanum tuberosum L. and Phaseolus vulgaris L. Wounding of one leaf of intact S. tuberosum plants differentially affected ethylene production and activities of peroxidase and polyphenol oxidase. Only polyphenol oxidase activity was stimulated by wounding in both wounded and systemic leaves. Peroxidase activity was not affected by wounding. Wounding caused only a transient increase of ethylene production from wounded leaves. The application of regurgitant to wound surfaces stimulated ethylene production as well as activities of peroxidase and polyphenol oxidase in both wounded and systemic leaves. Wounding significantly enhanced ethylene production and polyphenol oxidase activity in wounded and systemic leaves of P. vulgaris. The application of regurgitant caused an amplification of ethylene production, peroxidase activity, and polyphenol oxidase activity, in both wounded and systemic leaves of bean plants. Several substances were tested for their role as possible endogenous signals in P. vulgaris. Hydrogen peroxide and methyl jasmonate appeared as potential local and systemic signals of ethylene formation in wounded bean plants. Local ethylene production in leaf discs was differentially affected by the regurgitant application in potato versus bean plants. While all tested concentrations of regurgitant caused stimulation of ethylene formation from potato leaf discs, ethylene production was completely inhibited by increasing concentrations of the regurgitant in bean leaf discs. Our data present evidence that ethylene may play an important role in the interaction between plants and herbivores at the level of recognition of a particular herbivore leading to specific induction of signalling cascades.
Phytopathogenic fungi induced considerable economic losses in strawberry production industry; therefore, more attention should be paid to development and implementation of preventative treatment that is environmentally friendly. Coniferous trees produce a wide variety of compounds, such as terpenoids and phenolics. Several studies are known on fungicidal activity of different components of coniferous tree bark. The aim of this study was to evaluatein vitropine (Pinus sylvestrisL.) and spruce (Picea abies(L.) Karst.) bark ethanol extracts impact on pathogenous fungi causing diseases of strawberries. Products of processed pine (Pinus sylvestris) and spruce (Picea abies) bark were tested. During 2011 to 2013, severalin vitroexperiments were carried out to test the effectiveness of pine and spruce bark extracts against various phytopathogenic fungi isolated from strawberries:Botrytis cinerea, Colletotrichum acutatum, Phytophthora cactorumandMycosphaerella fragariae.Radial growth tests showed that coniferous bark extracts inhibit mycelial growth ofB. cinerea, C. acutatum, P. cactorumandM. fragariae. Extracts had the highest antifungal effect onB. cinereatwo and five days after inoculation (p< 0.05). Bark extracts can reduce the sporulation ofB. cinerea, C. acutatumandP. cactorum.
Predator‐prey interactions are an important evolutionary force affecting the immunity of the prey. Parasitoids and mites pierce the cuticle of their prey, which respond by activating their immune system against predatory attacks. Immunity is a costly function for the organism, as it often competes with other life‐history traits for limited nutrients. We tested whether the expression of antimicrobial peptides (AMP) of the larvae of the greater wax moth Galleria mellonella (L.) (Lepidoptera: Pyralidae) changes as a consequence of insertion of a nylon monofilament, which acts like a synthetic parasite. The treatment was done for larvae grown on a high‐quality vs. a low‐quality diet. The expression of Gloverin and 6‐tox were upregulated in response to the insertion of the nylon monofilament. The expression of 6‐tox, Cecropin‐D, and Gallerimycin were significantly higher in the ‘low‐quality diet’ group than in the ‘high‐quality diet’ group. As food quality seems to affect AMP gene expression in G. mellonella larvae, it should always be controlled for in studies on bacterial and fungal infections in G. mellonella.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.