In this paper, we address the problem of energy-aware heterogeneous data allocation and task scheduling on heterogeneous multiprocessor systems for real-time applications. In a heterogeneous distributed shared-memory multiprocessor system, an important problem is how to assign processors to real-time application tasks, allocate data to local memories, and generate an efficient schedule in such a way that a time constraint can be met and the total system energy consumption can be minimized. We propose an optimal approach, i.e., an integer linear programming method, to solve this problem. As the problem has been conclusively shown to be computationally very complicated, we also present two heuristic algorithms, i.e., task assignment considering data allocation (TAC-DA) and task ratio greedy scheduling (TRGS), to generate near-optimal solutions for real-time applications in polynomial time. We evaluate the performance of our algorithms by comparing them with a greedy algorithm that is commonly used to solve heterogeneous task scheduling problems. Based on our extensive simulation study, we observe that our algorithms exhibit excellent performance. We conducted experimental performance evaluation on two heterogeneous multiprocessor systems. The average reduction rates of the total energy consumption of the TAC-DA and TRGS algorithms to that of the greedy algorithm are 13.72% and 15.76%, respectively, on the first system, and 19.76% and 24.67%, respectively, on the second system. To the best of our knowledge, this is the first study to solve the problem of task scheduling incorporated with data allocation and energy consumption on heterogeneous distributed shared-memory multiprocessor systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.