The objective of this study was to evaluate effects of zinc oxide nanoparticles (nano-ZnOs) as a substitute for colistin sulfate (CS) and/or zinc oxide (ZnO) on growth performance, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. A total of 216 crossbred Duroc×(Landrace×Yorkshire) piglets weaned at 23 days were randomly assigned into 3 groups, which were fed with basal diets supplemented with 20 mg/kg CS (CS group), 20mg/kg CS+3000 mg/kg ZnO (CS+ZnO group), and 1200 mg/kg nano-ZnOs (nano-ZnO group) for 14 days. Results indicated that compared to CS group, supplementation of 1200 mg/kg nano-ZnOs (about 30 nm) significantly increased final body weight and average daily gain, and 3000 mg/kg ZnO plus colistin sulfate significantly increased average daily gain and decreased diarrhea rate in weaned piglets. There was no significant difference in growth performance and diarrhea rate between nano-ZnO and CS+ZnO groups. Supplementation of nano-ZnOs did not affect serum enzymes (glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase), but significantly increased plasma and tissue zinc concentrations (liver, tibia), improved intestinal morphology (increased duodenal and ileal villus length, crypt depth, and villus surface), enhanced mRNA expression of ZO-1 in ileal mucosa, and significantly decreased diamine oxidase activity in plasma, total aerobic bacterial population in MLN as compared to CS group. Effects of nano-ZnOs on serum enzymes, intestinal morphology, and mRNA expressions of tight junction were similar to those of high dietary ZnO plus colistin sulfate, while nano-ZnOs significantly reduced zinc concentrations of liver, tibia, and feces, and decreased total aerobic bacterial population in MLN as compared to CS+ZnO group. These results suggested that nano-ZnOs (1200 mg/kg) might be used as a substitute for colistin sulfate and high dietary ZnO in weaned piglets.
This study was conducted to investigate effects of dietary zinc oxide nanoparticles (nano-ZnOs) on growth, diarrhea rate, mineral deposition (Zn, Fe, and Mn), intestinal morphology, and barrier of weaned piglets. A total of 384 weaned piglets (Duroc × Landrace × Yorkshire) in 4 groups were fed a basal diet supplemented with 0, 400, and 800 mg/kg nano-ZnOs or 3000 mg/kg ZnO for 14 days. Compared with the control group, 800 mg/kg nano-ZnOs and 3000 mg/kg ZnO significantly increased average daily gain and decreased diarrhea rate of weaned piglets. There was no significant difference among ZnO and nano-ZnO groups. ZnO and nano-ZnOs did not affect serum activities of glutamic oxalacetic transaminase, glutamic-pyruvic transaminase, and lactate dehydrogenase. However, ZnO and 800 mg/kg nano-ZnOs significantly increased zinc concentrations in plasma, liver, pancreas, and tibia, without affecting Fe and Mn concentrations. Compared with the control group, 800 mg/kg nano-ZnOs significantly reduced plasma diamine oxidase activity, decreased total aerobic bacterial population in mesenteric lymph node, enhanced mRNA expressions of occludin, ZO-1, IL-1β, IL-10, TNF-α, and ki67 in ileal mucosa, and increased villous height, width, crypt depth, and surface area. Compared to ZnO group, 800 mg/kg nano-ZnOs significantly decreased aerobic bacterial population, enhanced mRNA expressions of occludin, IL-1β, IL-10, and TNF-α, and reduced fecal zinc concentration. These results indicated that 800 mg/kg nano-ZnOs might be a potential substitute for 3000 mg/kg ZnO in diets of weaned piglets.
This paper aimed to study the dietary effects of Bacillus subtilis fmbj (BS fmbj) on growth performance, small intestinal histomorphology, and its antioxidant capacity of broilers at 21 d of raising. A total of 300 1-d old male Arbor Acres broilers were randomly assigned to 5 groups: broilers fed the basal diets with 0 g/kg BS fmbj (CON), 0.2 g/kg BS fmbj (BS-1), 0.3 g/kg BS fmbj (BS-2), 0.4 g/kg BS fmbj (BS-3), and 0.5 g/kg BS fmbj (BS-4). The results showed that there were no differences in the growth performance among treatments during the trail. Dietary BS fmbj in broiler diets increased (P < 0.05) the serum immunoglobulin A (IgA) and immunoglobulin G (IgG) concentration, and enhanced the secretory immunoglobulin A (sIgA) level of small intestine (jejunum and ileum) compared with those in the CON group. The BS groups could improve (P < 0.05) the values of villus length, villus width, crypt depth, and villus area of small intestine compared with that in the CON group. Compared with the CON group, the BS group increased (P < 0.05) small intestinal antioxidant capacity and its mitochondrial antioxidant capacity, and also improved the antioxidant related-gene expression. The BS group exerted a lower (P < 0.05) level of oxidative damages in small intestine than that of the CON group. In conclusion, dietary BS fmbj in broiler diets was potential to improve the small intestinal histomorphology, small intestinal antioxidant capacity, and its mitochondrial antioxidant capacity. Thus this BS fmbj might be considered to be an important additive for the poultry industry.
Early operation for LMM patients, even asymptomatic ones, should be performed to prevent the development of neurological deficits. Subtotal excision of lipoma, suturing of the spinal pia mater, and section of the filum terminale are recommended in the surgical treatment of LMM. The longitudinal cut of the filum terminale, a technique we have established in our surgical practice, is a simple and practical way to identify the filum terminale by visual inspection. And suturing the spinal pia mater is of extreme importance in preventing postoperative tethering.
This study suggests that Risser sign, the magnitude of the major curve at pre-brace, apical vertebral rotation, and the spinal length increasing velocity are important factors to predict progression in the girls with AIS. Risser sign cannot predict the progression of scoliosis accurately unless combined with other related parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.