Chemically modified mRNA is an efficient, biocompatible modality for therapeutic protein expression. We report a first-time-in-human study of this modality, aiming to evaluate safety and potential therapeutic effects. Men with type 2 diabetes mellitus (T2DM) received intradermal injections of modified mRNA encoding vascular endothelial growth factor A (VEGF-A) or buffered saline placebo (ethical obligations precluded use of a non-translatable mRNA control) at randomized sites on the forearm. The only causally treatment-related adverse events were mild injection-site reactions. Skin microdialysis revealed elevated VEGF-A protein levels at mRNA-treated sites versus placebo-treated sites from about 4–24 hours post-administration. Enhancements in basal skin blood flow at 4 hours and 7 days post-administration were detected using laser Doppler fluximetry and imaging. Intradermal VEGF-A mRNA was well tolerated and led to local functional VEGF-A protein expression and transient skin blood flow enhancement in men with T2DM. VEGF-A mRNA may have therapeutic potential for regenerative angiogenesis.
Neutrophil serine proteases (NSPs), such as neutrophil elastase (NE), are activated by dipeptidyl peptidase 1 (DPP1) during neutrophil maturation. High NSP levels can be detrimental, particularly in lung tissue, and inhibition of NSPs is therefore an interesting therapeutic opportunity in multiple lung diseases, including chronic obstructive pulmonary disease (COPD) and bronchiectasis. We conducted a randomized, placebo‐controlled, first‐in‐human study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of single and multiple oral doses of the DPP1 inhibitor AZD7986 in healthy subjects. Pharmacokinetic and pharmacodynamic data were analyzed using nonlinear mixed effects modeling and showed that AZD7986 inhibits whole blood NE activity in an exposure‐dependent, indirect manner—consistent with in vitro and preclinical predictions. Several dose‐dependent, possibly DPP1‐related, nonserious skin findings were observed, but these were not considered to prevent further clinical development. Overall, the study results provided confidence to progress AZD7986 to phase II and supported selection of a clinically relevant dose.
We evaluated safety, tolerability, pharmacokinetics, and pharmacodynamics of AZD5718, a novel 5‐lipooxygenase activating protein (FLAP) inhibitor, in a randomized, single‐blind, placebo‐controlled, first‐in‐human (FIH) study consisting of single and multiple ascending dosing (SAD and MAD) for 10 days in healthy subjects. Target engagement was measured by ex vivo calcium ionophore stimulated leukotriene B (LTB4) production in whole blood and endogenous leukotriene E (LTE4) in urine. No clinically relevant safety and tolerability findings were observed. The AZD5718 was rapidly absorbed and plasma concentrations declined biphasically with a mean terminal half‐life of 10–12 h. Steady‐state levels were achieved after ∼3 days. After both SADs and MADs, a dose/concentration‐effect relationship between both LTB4 and LTE4 vs. AZD5718 exposure was observed with concentration of half inhibition (IC50) values in the lower nM range. Based on obtained result, AZD5718 is considered as a suitable drug candidate for future evaluation in patients with coronary artery disease (CAD).
Background: T cells play a dominant role in the pathogenesis of asthma. Costimulation of T cells is necessary to fully activate them. An inducible costimulator (ICOS) of T cells is predominantly expressed on Th2 cells. Therefore, interference of signaling pathways precipitated by ICOS may present new therapeutic options for Th2 dominated diseases such as asthma. However, these signaling pathways are poorly characterized in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.