Given a free isometric action of a split metacyclic group on odd dimensional sphere, we obtain an explicit finite cellular decomposition of the sphere equivariant with respect to the group action. A cell decomposition of the factor space and an explicit description of the associated cellular chain complex of modules over the integral group ring of the fundamental group follow. In particular, the construction provides a simple explicit 4-periodic free resolution for the split metacyclic groups.
Let G be a group and W a G-set. In this work we prove a result that describes geometrically, for a Poincaré duality pair .G; W /, the set of representatives for the G-orbits in W and the family of isotropy subgroups. We also prove, through a cohomological invariant, a necessary condition for a pair .G; W / to be a Poincaré duality pair when W is infinite.
O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores. Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.