Background Leptospira are shed into the environment via urine of infected animals. Rivers are thought to be an important risk factor for transmission to humans, though much is unknown about the types of environment or characteristics that favor survival. To address this, we screened for Leptospira DNA in two rivers in rural Ecuador where Leptospirosis is endemic. Results We collected 112 longitudinal samples and recorded pH, temperature, river depth, precipitation, and dissolved oxygen. We also performed a series of three experiments designed to provide insight into Leptospira presence in the soil. In the first soil experiment, we characterized prevalence and co-occurrence of Leptospira with other bacterial taxa in the soil at dispersed sites along the rivers (n = 64). In the second soil experiment, we collected 24 river samples and 48 soil samples at three points along eight transects to compare the likelihood of finding Leptospira in the river and on the shore at different distances from the river. In a third experiment, we tested whether Leptospira presence is associated with soil moisture by collecting 25 soil samples from two different sites. In our river experiment, we found pathogenic Leptospira in only 4 (3.7%) of samples. In contrast, pathogenic Leptospira species were found in 22% of shore soil at dispersed sites, 16.7% of soil samples (compared to 4.2% of river samples) in the transects, and 40% of soil samples to test for associations with soil moisture. Conclusions Our data are limited to two sites in a highly endemic area, but the scarcity of Leptospira DNA in the river is not consistent with the widespread contention of the importance of river water for leptospirosis transmission. While Leptospira may be shed directly into the river, onto the shores, or washed into the river from more remote sites, massive dilution and limited persistence in rivers may reduce the environmental load and therefore, the epidemiological significance of such sources. It is also possible that transmission may occur more frequently on shores where people are liable to be barefoot. Molecular studies that further explore the role of rivers and water bodies in the epidemiology of leptospirosis are needed.
Background Leptospirosis causes significant economic losses and is an occupational risk in the swine industry, especially in developing tropical regions where social and geoclimatic conditions are favorable for the transmission of this disease. Although vaccination can reduce infection risk, efficacy is diminished if local genetic and antigenic variants of the pathogen are not accounted for in the vaccine. Identifying and characterizing strains hosts, and potential mechanisms of transmission is therefore critical for public health mitigation practices. Methodology/Principal findings Our study was conducted on a rural breeding farm in Ecuador, where we used a PCR assay that targets lipL32 to detect Leptospira spp. and targeted gene sequencing to identify Leptospira santarosai in the kidneys, testicles, and ejaculate of a vaccinated boar. MAT results showed low titers against serovars found in the vaccine, but the MAT panel did not include serovars of L. santarosai. The boar showed no symptoms of leptospirosis but did show blood in the semen. However, no postmortem histopathological lesions were observed tissue samples. Vaccinated sows that were artificially inseminated with the semen from this boar had reproductive problems, suggesting that transmission had occurred. This is the first documented case of Leptospira santarosai in the reproductive tract of a boar. Conclusions/Significance As L. santarosai is pathogenic in other livestock species and humans, our finding highlights the need to evaluate the prevalence and epidemiological significance of this pathogen in livestock and consider the possibility of venereal transmission. In addition, further studies are needed to identify and characterize local serovars that may impact diagnosis and vaccination programs to better control leptospirosis in livestock and spillover into the human population.
BackgroundLeptospirosis causes significant economic losses and is an occupational risk in the swine industry, especially in developing tropical regions where social and geoclimatic conditions are favorable for the transmission of this disease. Although vaccination can reduce infection risk, efficacy is diminished if local genetic and antigenic variants of the pathogen are not accounted for in the vaccine. Identifying and characterizing strains that circulate in different populations is therefore critical for public health mitigation practices.Methodology/Principal findingsOur study was conducted on a rural breeding farm in Ecuador, where we identified, for the first time, Leptospira santarosai in the kidneys, testicles, and ejaculate of a vaccinated boar. L. santarosai was detected with a PCR assay that targets lipL32, and identified by target MLST gene sequencing using an Oxford Nanopore MinION sequencer.Conclusions/SignificanceAs L. santarosai is pathogenic in other livestock species and humans, our finding highlights the need to evaluate the prevalence and epidemiological significance of this pathogen in pigs. In addition, further studies are needed to identify and characterize local serovars that may impact diagnosis and vaccination programs to better control leptospirosis in pigs and spillover into the human population.Author summaryLeptospirosis poses a significant threat to human and animal health. In tropical countries, leptospirosis is very common, and responsible of economic losses in the livestock industry. In peridomestic and rural farms, the spillover of leptospira to humans is particularly likely as humans live and work in close proximity to animals. Although animal vaccination can reduce risk of infection, efficacy is diminished when local variants are not included in the vaccine. This report describes, for the first time, the presence of Leptospira santarosai in the reproductive tract of a vaccinated domestic boar from a rural farm in Ecuador. We detected the pathogen in its semen and urine, and despite no tissue damage, was observed in the kidneys, testes or epididymis. The farm veterinarian reported reproductive problems in sows inseminated with the semen from this boar. Our results highlight the importance of recognizing locally circulating serovars and species so that they can be included in vaccines to prevent infection and disease. Effective control of leptospirosis in livestock not only reduces economic losses for breeders, but also reduces the risk of infection and disease in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.