Abstract. Car safety measures can be most effective when the cars on a street coordinate their control actions using distributed cooperative control. While each car optimizes its navigation planning locally to ensure the driver reaches his destination, all cars coordinate their actions in a distributed way in order to minimize the risk of safety hazards and collisions. These systems control the physical aspects of car movement using cyber technologies like local and remote sensor data and distributed V2V and V2I communication. They are thus cyber-physical systems. In this paper, we consider a distributed car control system that is inspired by the ambitions of the California PATH project, the CICAS system, SAFESPOT and PReVENT initiatives. We develop a formal model of a distributed car control system in which every car is controlled by adaptive cruise control. One of the major technical difficulties is that faithful models of distributed car control have both distributed systems and hybrid systems dynamics. They form distributed hybrid systems, which makes them very challenging for verification. In a formal proof system, we verify that the control model satisfies its main safety objective and guarantees collision freedom for arbitrarily many cars driving on a street, even if new cars enter the lane from on-ramps or multi-lane streets. The system we present is in many ways one of the most complicated cyber-physical systems that has ever been fully verified formally.
Abstract. Programming languages often include specialized syntax for common datatypes (e.g. lists) and some also build in support for specific specialized datatypes (e.g. regular expressions), but user-defined types must use generalpurpose syntax. Frustration with this causes developers to use strings, rather than structured data, with alarming frequency, leading to correctness, performance, security, and usability issues. Allowing library providers to modularly extend a language with new syntax could help address these issues. Unfortunately, prior mechanisms either limit expressiveness or are not safely composable: individually unambiguous extensions can still cause ambiguities when used together. We introduce type-specific languages (TSLs): logic associated with a type that determines how the bodies of generic literals, able to contain arbitrary syntax, are parsed and elaborated, hygienically. The TSL for a type is invoked only when a literal appears where a term of that type is expected, guaranteeing noninterference. We give evidence supporting the applicability of this approach and formally specify it with a bidirectionally typed elaboration semantics for the Wyvern programming language.
Abstract-Current provenance collection systems typically gather metadata on remote hosts and submit it to a central server. In contrast, several data-intensive scientific applications require a decentralized architecture in which each host maintains an authoritative local repository of the provenance metadata gathered on that host. The latter approach allows the system to handle the large amounts of metadata generated when auditing occurs at fine granularity, and allows users to retain control over their provenance records. The decentralized architecture, however, increases the complexity of auditing, tracking, and querying distributed provenance. We describe a system for capturing data provenance in distributed applications, and the use of provenance sketches to optimize subsequent data provenance queries. Experiments with data gathered from distributed workflow applications demonstrate the feasibility of a decentralized provenance management system and improvements in the efficiency of provenance queries.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.