T helper type 17 (Th17) cells play an important pathogenic function in autoimmune diseases; their regulation, however, is not well understood. We show that the expression of a tumor necrosis factor receptor family member, death receptor 3 (DR3; also known as TNFRSF25), is selectively elevated in Th17 cells, and that TL1A, its cognate ligand, can promote the proliferation of effector Th17 cells. To further investigate the role of the TL1A–DR3 pathway in Th17 regulation, we generated a TL1A-deficient mouse and found that TL1A−/− dendritic cells exhibited a reduced capacity in supporting Th17 differentiation and proliferation. Consistent with these data, TL1A−/− animals displayed decreased clinical severity in experimental autoimmune encephalomyelitis (EAE). Finally, we demonstrated that during EAE disease progression, TL1A was required for the optimal differentiation as well as effector function of Th17 cells. These observations thus establish an important role of the TL1A–DR3 pathway in promoting Th17 cell function and Th17-mediated autoimmune disease.
TNF-like weak inducer of apoptosis, or TWEAK, is a relatively new member of the TNF-ligand superfamily. Ligation of the TWEAK receptor Fn14 by TWEAK has proinflammatory effects on fibroblasts, synoviocytes, and endothelial cells. Several of the TWEAK-inducible cytokines are important in the pathogenesis of kidney diseases; however, whether TWEAK can induce a proinflammatory effect on kidney cells is not known. We found that murine mesangial cells express cell surface TWEAK receptor. TWEAK stimulation of mesangial cells led to a dose-dependent increase in CCL2/MCP-1, CCL5/RANTES, CXCL10/IFN-γ-induced protein 10 kDa, and CXCL1/KC. The induced levels of chemokines were comparable to those found following mesangial cell exposure to potent proinflammatory stimuli such as TNF-α + IL-1β. CXCL11/interferon-inducible T cell α chemoattractant, CXCR5, mucosal addressin cell adhesion molecule-1, and VCAM-1 were up-regulated by TWEAK as well. TWEAK stimulation of mesangial cells resulted in an increase in phosphorylated Iκ-B, while pretreatment with an Iκ-B phosphorylation inhibitor significantly blocked chemokine induction, implicating activation of the NF-κB signaling pathway in TWEAK-induced chemokine secretion. Importantly, the Fn14-mediated proinflammatory effects of TWEAK on kidney cells were confirmed using mesangial cells derived from Fn14-deficient mice and by injection in vivo of TWEAK into wild-type vs Fn14-deficient mice. Finally, TWEAK-induced chemokine secretion was prevented by treatment with novel murine anti-TWEAK Abs. We conclude that TWEAK induces mesangial cells to secrete proinflammatory chemokines, suggesting a prominent role for TWEAK in the pathogenesis of renal injury. Our results support Ab inhibition of TWEAK as a potential new approach for the treatment of chemokine-dependent inflammatory kidney diseases.
Herein we demonstrate that B cell-activating factor of the TNF family (BAFF), a B cell survival factor, also regulates CD21/35 and CD23 expression. BAFF blockade in wild-type mice down-modulates CD21/35 and CD23 on B cells while survival remains intact, and BAFF exposure causes elevated CD21/35 and CD23 expression. Similar down-modulation is observed in bcl-2-transgenic mice treated with a BAFF inhibitor. This is the first evidence that BAFF has a function independent of B cell survival. Reports using CD21/35 and CD23 expression to assess splenic B cell subsets in BAFF-null mice concluded a lack of B cells beyond the immature stage. Since CD21/35 and CD23 are inadequate for delineating B cell subpopulations in BAFF-null mice, we used expression of BAFF-R and several B cell markers to identify more mature splenic B cells in these mice. These data broaden our understanding of BAFF function and correct the view that BAFF-null mice lack mature B cells.
IntroductionTNF-like weak inducer of apoptosis (TWEAK) has been implicated as a mediator of chronic inflammatory processes via prolonged activation of the NF-κB pathway in several tissues, including the kidney. Evidence for the importance of TWEAK in the pathogenesis of lupus nephritis (LN) has been recently introduced. Thus, TWEAK levels may serve as an indication of LN presence and activity.MethodsMulticenter cohorts of systemic lupus erythematosus (SLE) patients and controls were recruited for cross-sectional and longitudinal analysis of urinary TWEAK (uTWEAK) and/or serum TWEAK (sTWEAK) levels as potential biomarkers of LN. The performance of TWEAK as a biomarker for nephritis was compared with routinely used laboratory tests in lupus patients, including anti-double stranded DNA antibodies and levels of C3 and C4.ResultsuTWEAK levels were significantly higher in LN patients than in non-LN SLE patients and other disease control groups (P = 0.039). Furthermore, uTWEAK was better at distinguishing between LN and non-LN SLE patients than anti-DNA antibodies and complement levels, while high uTWEAK levels predicted LN in SLE patients with an odds ratio of 7.36 (95% confidence interval = 2.25 to 24.07; P = 0.001). uTWEAK levels peaked during LN flares, and were significantly higher during the flare than at 4 and 6 months prior to or following the flare event. A linear mixed-effects model showed a significant association between uTWEAK levels in SLE patients and their disease activity over time (P = 0.008). sTWEAK levels, however, were not found to correlate with the presence of LN or the degree of nephritis activity.ConclusionsHigh uTWEAK levels are indicative of LN, as opposed to non-LN SLE and other healthy and disease control populations, and reflect renal disease activity in longitudinal follow-up. Thus, our study further supports a role for TWEAK in the pathogenesis of LN, and provides strong evidence for uTWEAK as a candidate clinical biomarker for LN.
TNF-like weak inducer of apoptosis (TWEAK) is a TNF family member with pleiotropic effects on a variety of cell types, one of which is the induction of proinflammatory cytokines by synovial fibroblasts derived from rheumatoid arthritis (RA) patients. In this study, we report that the serum TWEAK level was dramatically elevated during mouse collagen-induced arthritis (CIA) and blocking TWEAK by a neutralizing mAb significantly reduced the clinical severity of CIA. Histological analyses also revealed that TWEAK inhibition diminished joint inflammation, synovial angiogenesis, as well as cartilage and bone erosion. Anti-TWEAK treatment proved efficacious when administered just before the disease onset but not during the priming phase of CIA. Consistent with this, TWEAK inhibition did not affect either cellular or humoral responses to collagen. In contrast, TWEAK inhibition significantly reduced serum levels of a panel of arthritogenic mediators, including chemokines such as MIP-1β (CCL-4), lymphotactin (XCL-1), IFN-γ-inducible protein 10 (IP-10) (CXCL-10), MCP-1 (CCL-2), and RANTES (CCL-5), as well as the matrix metalloprotease-9. Exploring the possible role of the TWEAK/Fn14 pathway in human RA pathogenesis, we showed that TWEAK can target human primary chondrocytes and osteoblast-like cells, in addition to synovial fibroblasts. We further demonstrated that TWEAK induced the production of matrix metalloproteases in human chondrocytes and potently inhibited chondrogenesis and osteogenesis using in vitro models. These results provide evidence for a novel cytokine pathway that contributes to joint tissue inflammation, angiogenesis, and damage, as well as may inhibit endogenous repair, suggesting that TWEAK may be a new therapeutic target for human RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.