The core of intelligent virtual geographical environments (VGEs) is the formal expression of geographic knowledge. Its purpose is to transform the data, information, and scenes of a virtual geographic environment into “knowledge” that can be recognized by computer, so that the computer can understand the virtual geographic environment more easily. A geographic knowledge graph (GeoKG) is a large-scale semantic web that stores geographical knowledge in a structured form. Based on a geographic knowledge base and a geospatial database, intelligent interactions with virtual geographical environments can be realized by natural language question answering, entity links, and so on. In this paper, a knowledge-enhanced Virtual geographical environments service framework is proposed. We construct a multi-level semantic parsing model and an enhanced GeoKG for structured geographic information data, such as digital maps, 3D virtual scenes, and unstructured information data. Based on the GeoKG, we propose a bilateral LSTM-CRF (long short-term memory- conditional random field) model to achieve natural language question answering for VGEs and conduct experiments on the method. The results prove that the method of intelligent interaction based on the knowledge graph can bridge the distance between people and virtual environments.
In view of the lack of data association in spatiotemporal information analysis and the lack of spatiotemporal situation analysis in knowledge graphs, this paper combines the semantic web of the geographic knowledge graph with the visual analysis model of spatial information and puts forward the comprehensive utilization of the related technologies of the geographic knowledge graph and big data visual analysis. Then, it realizes the situational analysis of COVID-19 (Coronavirus Disease 2019) and the exploration of patient relationships through interactive collaborative analysis. The main contributions of the paper are as follows. (1) Based on the characteristics of the geographic knowledge graph, a patient entity model and an entity relationship type and knowledge representation method are proposed, and a knowledge graph of the spatiotemporal information of COVID-19 is constructed. (2) To analyse the COVID-19 patients' situations and explore their relationships, an analytical framework is designed. The framework, combining the semantic web of the geographic knowledge graph and the visual analysis model of geographic information, allows one to analyse the semantic web by using the node attribute similarity calculation, key stage mining, community prediction and other methods. (3) An efficient epidemic prevention and anti-epidemic method, which is of referential significance, is proposed. It is based on experiments and the collaborative analysis of the semantic web and spatial information, allowing for real-time situational understanding, the discovery of patients' relationships, the analysis of the spatiotemporal distribution of patients, super spreader mining, key node analysis, and the prevention and control of high-risk groups. INDEX TERMS COVID-19; geographic knowledge graph; spatiotemporal big data; visual analysis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.