Abstract. The kinetic isotope effects in the reactions of CH3Cl, 13CH3Cl and CD3Cl with OH radicals and Cl atoms were studied in relative rate experiments at 298±2 K and 1013±10 mbar. The reactions were carried out in a smog chamber using long path FTIR detection and the spectroscopic data analyzed employing a non-linear least squares spectral fitting method using measured high-resolution infrared spectra as well as absorption cross sections from the HITRAN database. The reaction rates of 13CH3Cl and CD3Cl with OH and Cl were determined relative to CH3Cl as: kOH+CH3ClkOH+CH3Cl/kOH+13CH3Cl}kOH+13CH3Cl=1.059±0.008, kOH+CH3ClkOH+CH3Cl/kOH+CD3ClkOH+CD3Cl=3.9±0.4, kCl+CH3ClkCl+CH3Cl/kCl+13CH3ClkCl+13CH3Cl =1.070±0.010 and kCl+CH3ClkCl+CH3Cl/kCl+CD3ClkCl+CD3Cl=4.91±0.07. The uncertainties given are 2σ from the statistical analyses and do not include possible systematic errors. The unexpectedly large 13C kinetic isotope effect in the OH reaction of CH3Cl has important implications for the global emission inventory of CH3Cl.
The gas phase reactions between HF and the protonated alkyl fluorides MeFH+, EtFH+, Pr(i)FH+, and Bu(t)FH+ have been studied using ab initio methods. The potential energy profiles for both nucleophilic substitution (S(N)2) and elimination (E2) pathways have been investigated. Both backside Walden inversion and frontside nucleophilic substitution reaction profiles have been generated. Backside substitution is very favourable, but shows relatively little variation with the alkyl group. Frontside substitution reaction barriers are only slightly higher than the barrier for backside substitution for HF + MeFH+, and the difference in barrier heights for frontside and backside displacement seems negligible for the larger alkyl groups. Reaction barrier trends have been analysed and compared with the results of similar studies of the H2O/ROH2+ and NH3/RNH3+ systems (R = Me, Et, Pr(i), and Bu(t)). Compared to the two other classes, protonated fluorides have extreme structures which, with the exception of the Me substrate, are weakly bound complexes between an alkyl cation and HF. The results nourish the idea that nucleophilic substitution reactions are better understood in view of competition between frontside and backside substitution than from the traditional S(N)1/S(N)2 perspective.
A laser flash photolysis-resonance fluorescence technique has been employed to determine absolute rate coefficients for the CH3F + Cl reaction in N2 bath gas in the temperature range of 200-700 K and pressure range of 33-133 hPa. The data were fitted to a modified Arrhenius expression k(T) = 1.14 x 10(-12) x (T/298)2.26 exp{-313/T}. The OH and Cl reaction rates of (13)CH3F and CD3F have been measured by long-path FTIR spectroscopy relative to CH3F at 298 +/- 2 K and 1013 +/- 10 hPa in purified air. The FTIR spectra were fitted using a nonlinear least-squares spectral fitting method including line data from the HITRAN database and measured infrared spectra as references. The relative reaction rates defined by alpha = k(light)/k(heavy) were determined to be k(OH+CH3F)/k(OH+CD3F) = 4.067 +/- 0.018, k(OH+CH3F)/k(OH+(13)CH3F) = 1.067 +/- 0.006, k(Cl+CH3F)/k(Cl+CD3F) = 5.11 +/- 0.07, and k(Cl+CH3F)/k(Cl+(13)CH3F) = 1.016 +/- 0.006. The carbon-13 and deuterium kinetic isotope effects in the OH and Cl reactions of CH3F have been further investigated by quantum chemistry methods and variational transition state theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.