Background A biosimilar needs to demonstrate its similarity to the originator reference product (RP) in terms of structural and functional properties as well as nonclinical and clinical outcomes. Objectives The aim was to assess the analytical similarity between the trastuzumab biosimilar HLX02 and Europe-sourced Herceptin ® (EU-Herceptin ® ) and China-sourced Herceptin ® (CN-Herceptin ® ) following a quality-by-design (QbD) quality study and tier-based quality attribute evaluation. Methods A panel of highly sensitive and orthogonal methods, including a novel Fc gamma receptor IIIa (FcγRIIIa) affinity chromatography technique that enables quantitative comparison of glycan effects on effector function, was developed for the assessment. To ensure the full product variability was captured, ten batches of HLX02 were compared with 39 RP batches with expiry dates from August 2017 to March 2021. Results The extensive three-way similarity assessment demonstrated that HLX02 is highly similar to the RPs. Furthermore, the %afucose, %galactose, and FcγRIIIa affinity of the RPs were observed to first decrease and then return to the original level in relation to their expiry dates, and the RP batches can be subgrouped by their FcγRIIIa affinity chromatograms. HLX02 is demonstrated to be more similar to the RPs of the high FcγRIIIa affinity group. Conclusion Besides having an overall high analytical similarity to both EU-Herceptin ® and CN-Herceptin ® , HLX02 is more similar to Herceptin ® with high FcγRIIIa affinity, a result that demonstrates the power of the novel FcγRIIIa affinity chromatography technology in biosimilarity evaluation.
Recently significant progress has been made in differentiating embryonic stem (ES) cells toward pancreatic cells. However, little is known about the generation and identification of pancreatic progenitor cells from ES cells. Here we explored the influence of sodium butyrate on pancreatic progenitor differentiation, and investigated the different effects of sodium butyrate on pancreatic and hepatic progenitor formation. Our results indicated that different concentration and exposure time of sodium butyrate led to different differentiating trends of ES cells. A relatively lower concentration of sodium butyrate with shorter exposure time induced more pancreatic progenitor cell formation. When stimulated by a higher concentration and longer exposure time of sodium butyrate, ES cells differentiated toward hepatic progenitor cells rather than pancreatic progenitor cells. These progenitor cells could further mature into pancreatic and hepatic cells with the supplement of exogenous inducing factors. The resulting pancreatic cells expressed specific markers such as insulin and C-peptide, and were capable of insulin secretion in response to glucose stimulation. The differentiated hepatocytes were characterized by the expression of a number of liver-associated genes and proteins, and had the capability of glycogen storage. Thus, the current study demonstrated that sodium butyrate played different roles in inducing ES cells toward pancreatic or hepatic progenitor cells. These progenitor cells could be further induced into mature pancreatic cells and hepatocytes. This finding may facilitate the understanding of pancreatic and hepatic cell differentiation from ES cells, and provide a potential source of transplantable cells for cell-replacement therapies.
Background Diabetic nephropathy (DN) is currently the leading cause of end-stage renal disease globally. The endothelial-to-mesenchymal transition (EndMT) of glomerular endothelial cells has been reported to play a crucial role in DN. As a specific form of epithelial-to-mesenchymal transition, EndMT and epithelial-to-mesenchymal transition may exhibit mutual modulators. Profilin 2 (PFN2) has been reported to participate in epithelial-to-mesenchymal transition. Moreover, ETS proto-oncogene 1 (ets1) and lysine methyltransferase 5A (KMT5A) have been reported to contribute to high glucose-mediated endothelial injury and epithelial-to-mesenchymal transition. In this study, we hypothesize ets1 associates with KMT5A to modulate PFN2 transcription, thus participating in high glucose-mediated EndMT in glomerular endothelial cells. Methods Immunohistochemistry (IHC) was performed to detect protein levels in the kidney tissues and/or aorta tissues of human subjects and rats. Western blot, qPCR and immunofluorescence were performed using human umbilical vein endothelial cells (HUVECs). Chromatin immunoprecipitation (ChIP) assays and dual luciferase assays were performed to assess transcriptional activity. The difference between the groups was compared by two-tailed unpaired t-tests or one-way ANOVAs. Results Our data indicated that vimentin, αSMA, S100A4 and PFN2 levels were increased, and CD31 levels were reduced in glomerular endothelial cells of DN patients and rats. Our cell experiments showed that high glucose induced EndMT by augmenting PFN2 expression in HUVECs. Moreover, high glucose increased ets1 expression. si-ets1 suppressed high glucose-induced PFN2 levels and EndMT. ets1 overexpression-mediated EndMT was reversed by si-PFN2. Furthermore, ets1 was determined to associate with KMT5A. High glucose attenuated KMT5A levels and histone H4 lysine 20 methylation (H4K20me1), one of the downstream targets of KMT5A. KMT5A upregulation suppressed high glucose-induced PFN2 levels and EndMT. sh-KMT5A-mediated EndMT was counteracted by si-PFN2. Furthermore, H4K20me1 and ets1 occupied the PFN2 promoter region. sh-KMT5A cooperated with ets1 overexpression to activate PFN2 promoter activity. Our in vivo study demonstrated that KMT5A was reduced, while ets1 was augmented, in glomerular endothelial cells of DN patients and rats. Conclusions The present study indicated that ets1 cooperated with KMT5A to transcribe PFN2, thus contributing to hyperglycemia-induced EndMT in the glomerular endothelial cells of DN patients and rats. Trial registration ChiCTR, ChiCTR2000029425. 2020/1/31, http://www.chictr.org.cn/showproj.aspx?proj=48548
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.