Transcranial direct current stimulation (tDCS) is a widely-used tool to induce neuroplasticity and modulate cortical function by applying weak direct current over the scalp. In this review, we first introduce the underlying mechanism of action, the brief history from discovery to clinical scientific research, electrode positioning and montages, and parameter setup of tDCS. Then, we review tDCS application in clinical samples including people with drug addiction, major depression disorder, Alzheimer's disease, as well as in children. This review covers the typical characteristics and the underlying neural mechanisms of tDCS treatment in such studies. This is followed by a discussion of safety, especially when the current intensity is increased or the stimulation duration is prolonged. Given such concerns, we provide detailed suggestions regarding safety procedures for tDCS operation. Lastly, future research directions are discussed. They include foci on the development of multi-tech combination with tDCS such as with TMS and fMRI; long-term behavioral and morphological changes; possible applications in other research domains, and more animal research to deepen the understanding of the biological and physiological mechanisms of tDCS stimulation.
Cognitive flexibility forms the core of the extraordinary ability of humans to adapt, but the precise neural mechanisms underlying our ability to nimbly shift between task sets remain poorly understood. Recent functional magnetic resonance imaging (fMRI) studies employing multivoxel pattern analysis (MVPA) have shown that a currently relevant task set can be decoded from activity patterns in the frontoparietal cortex, but whether these regions support the dynamic transformation of task sets from trial to trial is not clear. Here, we combined a cued task-switching protocol with human (both sexes) fMRI, and harnessed representational similarity analysis (RSA) to facilitate a novel assessment of trial-by-trial changes in neural task-set representations. We first used MVPA to define task-sensitive frontoparietal and visual regions and found that neural task-set representations on switch trials are less stably encoded than on repeat trials. We then exploited RSA to show that the neural representational pattern dissimilarity across consecutive trials is greater for switch trials than for repeat trials, and that the degree of this pattern dissimilarity predicts behavior. Moreover, the overall neural pattern of representational dissimilarities followed from the assumption that repeating sets, compared with switching sets, results in stronger neural task representations. Finally, when moving from cue to target phase within a trial, pattern dissimilarities tracked the transformation from previous-trial task representations to the currently relevant set. These results provide neural evidence for the longstanding assumptions of an effortful task-set reconfiguration process hampered by task-set inertia, and they demonstrate that frontoparietal and stimulus processing regions support "dynamic adaptive coding," flexibly representing changing task sets in a trial-by-trial fashion. Humans can fluently switch between different tasks, reflecting an ability to dynamically configure "task sets," rule representations that link stimuli to appropriate responses. Recent studies show that neural signals in frontal and parietal brain regions can tell us which of two tasks a person is currently performing. However, it is not known whether these regions are also involved in dynamically reconfiguring task-set representations when switching between tasks. Here we measured human brain activity during task switching and tracked the similarity of neural task-set representations from trial to trial. We show that frontal and parietal brain regions flexibly recode changing task sets in a trial-by-trial fashion, and that task-set similarity over consecutive trials predicts behavior.
Nearly monodisperse cobalt ferrite (CoFe2O4) nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid–solid-solution (LSS) process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.