Green leaf area index (LAI) is an important variable related to crop growth. Accurate and timely information on LAI is essential for developing suitable field management strategies to mitigate risk and boost yield. Several remote sensing (RS) based methods have been recently developed to estimate LAI at the regional scale. However, the performance of these methods tends to be affected by the quality of RS data, especially when time-series LAI are required. For crop LAI estimation, supplementary growth information from crop model is helpful to address this issue. In this study, we focus on the regional-scale LAI estimations of spring maize for the entire growth season. Using time-series multispectral RS data acquired by an unmanned aerial vehicle (UAV) and the World Food Studies (WOFOST) crop model, three methods were applied at different crop growth stages: empirical method using vegetation index (VI), data assimilation method and hybrid method. The VI-based method and assimilation method were used to generate time-series LAI estimations for the whole crop growth season. Then, a hybrid method specially for the late-stage LAI retrieval was developed by integrating WOFOST model and data assimilation. Using field-collected LAI data in Hongxing Farm in 2014, the performances of these three methods were evaluated. At the early stage, the VI-based method (R2 = 0.63, RMSE = 0.16, n = 36) achieved higher accuracy than the assimilation method (R2 = 0.54, RMSE = 0.52, n = 36), whereas at the mid stage, the assimilation method (R2 = 0.63, RMSE = 0.46, n = 28) showed higher accuracy than the VI-based method (R2 = 0.41, RMSE = 0.51, n = 28). At the late stage, the hybrid method yielded the highest accuracy (R2 = 0.63, RMSE = 0.46, n = 29), compared with the VI-based method (R2 = 0.19, RMSE = 0.43, n = 28) and the assimilation method (R2 = 0.20, RMSE = 0.44, n = 29). Based on the results above, we considered a combination of the three methods, i.e., the VI-based method for the early stage, the assimilation method for the mid stage, and the hybrid method for the late stage, as an ideal strategy for spring-maize LAI estimation for the entire growth season of 2014 in Hongxing Farm, and the accuracy of the combined method over the whole growth season is higher than that of any single method.
Accurate and continuous monitoring of leaf area index (LAI), a widely-used vegetation structural parameter, is crucial to characterize crop growth conditions and forecast crop yield. Meanwhile, advancements in collecting field LAI measurements have provided strong support for validating remote-sensing-derived LAI. This paper evaluates the performance of LAI retrieval from multi-source, remotely sensed data through comparisons with continuous field LAI measurements. Firstly, field LAI was measured continuously over periods of time in 2018 and 2019 using LAINet, a continuous LAI measurement system deployed using wireless sensor network (WSN) technology, over an agricultural region located at the Heihe watershed at northwestern China. Then, cloud-free images from optical satellite sensors, including Landsat 7 the Enhanced Thematic Mapper Plus (ETM+), Landsat 8 the Operational Land Imager (OLI), and Sentinel-2A/B Multispectral Instrument (MSI), were collected to derive LAI through inversion of the PROSAIL radiation transfer model using a look-up-table (LUT) approach. Finally, field LAI data were used to validate the multi-temporal LAI retrieved from remote-sensing data acquired by different satellite sensors. The results indicate that good accuracy was obtained using different inversion strategies for each sensor, while Green Chlorophyll Index (CIgreen) and a combination of three red-edge bands perform better for Landsat 7/8 and Sentinel-2 LAI inversion, respectively. Furthermore, the estimated LAI has good consistency with in situ measurements at vegetative stage (coefficient of determination R2 = 0.74, and root mean square error RMSE = 0.53 m2 m−2). At the reproductive stage, a significant underestimation was found (R2 = 0.41, and 0.89 m2 m−2 in terms of RMSE). This study suggests that time-series LAI can be retrieved from multi-source satellite data through model inversion, and the LAINet instrument could be used as a low-cost tool to provide continuous field LAI measurements to support LAI retrieval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.