Type 2 diabetes, which is a complex metabolic disease influenced by genetic and environment, has become a worldwide problem. Previous published results focused on genetic components through genome-wide association studies that just interpret this disease to some extent. Recently, two research groups published metagenome-wide association studies (MGWAS) result that found meta-biomarkers related with type 2 diabetes. However, One key problem of analyzing genomic data is that how to deal with the ultra-high dimensionality of features. From a statistical viewpoint it is challenging to filter true factors in high dimensional data. Various methods and techniques have been proposed on this issue, which can only achieve limited prediction performance and poor interpretability. New statistical procedure with higher performance and clear interpretability is appealing in analyzing high dimensional data. To address this problem, we apply an excellent statistical variable selection procedure called iterative sure independence screening to gene profiles that obtained from metagenome sequencing, and 48/24 meta-markers were selected in Chinese/European cohorts as predictors with 0.97/0.99 accuracy in AUC (area under the curve), which showed a better performance than other model selection methods, respectively. These results demonstrate the power and utility of data mining technologies within the large-scale and ultra-high dimensional genomic-related dataset for diagnostic and predictive markers identifying.
The dysbiosis of human microbiome has been proven to be associated with the development of many human diseases. Metagenome sequencing emerges as a powerful tool to investigate the effects of microbiome on diseases. Identification of human gut microbiome markers associated with abnormal phenotypes may facilitate feature selection for multiclass classification. Compared with binary classifiers, multiclass classification models deploy more complex discriminative patterns. Here, we developed a pipeline to address the challenging characterization of multilabel samples. In this study, a total of 300 biomarkers were selected from the microbiome of 806 Chinese individuals (383 controls, 170 with type 2 diabetes, 130 with rheumatoid arthritis, and 123 with liver cirrhosis), and then logistic regression prediction algorithm was applied to those markers as the model intrinsic features. The estimated model produced an F1 score of 0.9142, which was better than other popular classification methods, and an average receiver operating characteristic (ROC) of 0.9475 showed a significant correlation between these selected biomarkers from microbiome and corresponding phenotypes. The results from this study indicate that machine learning is a vital tool in data mining from microbiome in order to identify disease-related biomarkers, which may contribute to the application of microbiome-based precision medicine in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.