Clos-based networks including Fat-tree and VL2 are being built in data centers, but existing per-flow based routing causes low network utilization and long latency tail. In this paper, by studying the structural properties of Fattree and VL2, we propose a per-packet round-robin based routing algorithm called Digit-Reversal Bouncing (DRB). DRB achieves perfect packet interleaving. Our analysis and simulations show that, compared with random-based loadbalancing algorithms, DRB results in smaller and bounded queues even when traffic load approaches 100%, and it uses smaller re-sequencing buffer for absorbing out-of-order packet arrivals. Our implementation demonstrates that our design can be readily implemented with commodity switches. Experiments on our testbed, a Fat-tree with 54 servers, confirm our analysis and simulations, and further show that our design handles network failures in 1-2 seconds and has the desirable graceful performance degradation property.
In this paper, highly selective core-shell molecularly imprinted polymers (MIPs) of tadalafil on the surface of magnetic nanoparticles (MNPs) were prepared. Three widely used functional monomers 2-(trifluoromethyl) acrylic acid (TFMAA), acrylic acid (AA), and methacrylic acid (MAA) were compared theoretically as the candidates for MIP preparation. MIP-coated magnetic nanoparticles (MIP-coated MNPs) showed large adsorption capacity, high recognition ability, and fast binding kinetics for tadalafil. Furthermore, because of the good magnetic properties, MIP-coated MNPs can achieve rapid and efficient separation with an external magnetic field simply. The resulting MIP-coated MNPs were used as dispersive solid-phase extraction (DSPE) materials coupled with HPLC-UV for the selective extraction and detection of tadalafil from medicines (herbal sexual health products). Encouraging results were obtained. The amounts of tadalafil that were detected from the herbal sexual health product was 43.46 nmol g(-1), and the recoveries were in the range of 87.36-90.93% with the RSD < 6.55%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.