Dynamic and real-time monitoring of the motion state of soft actuators is of great significance for optimizing their performance. However, present noncontact measurement approaches based on diffractive groove arrays fabricated by imprinting have some limitation, e.g., the grooves should be processed before the solidification of soft materials or the depth and period of grooves cannot be flexibly adjusted. Here, a flexible and highefficiency fabrication approach carbon-assisted laser interference lithography (CLIL) for periodical groove structures with structural color is proposed. This technique is to irradiate the interference laser on the PDMS surface coated by a carbon layer, which is used for enhanced laser absorption. The processing parameters are systematically studied and optimized to achieve a bright structural color. Benefiting from the advantages of CLIL, the structural color can be processed on a solidified transparent surface with controllable characteristics such as groove period and depth. Lastly, the motion of an electric-driven actuator can be real-time quantified by calibrating the relationship between the observation angle and the observed structural color.
A photochromic poly(2-hydroxyl-ethyl methacrylate-N-vinylpyrrolidone-spironaphthoxazine) hydrogel (p(HEMA-NVP-SPO)) has been designed and synthesized by free radical polymerization in this work. The chemical and structural information of hydrogels was investigated by IR spectra, equilibrium water content (EWC), and SEM. The IR spectra confirmed successful synthesis of copolymer. The domain of NVP contributed to not only EWC but also inner structure of hydrogel, while SPO had little influence on these properties of hydrogel. The photochromic behaviors of hydrogel including photochromic properties and thermal fading kinetics were systematically studied and compared with hydrogel made by immersing method. Results showed that when SPO was incorporated in hydrogel by polymerization, maximum absorbance wavelength got shorter, and the relaxation half-life became longer. In addition, salicylic acid as a drug model could be loaded into hydrogel by immersing method, and its sustained drug release in a given period was dependent on the characteristics of solution and loading time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.