Summary
To characterize somatic alterations in colorectal carcinoma (CRC), we conducted genome-scale analysis of 276 samples, analyzing exome sequence, DNA copy number, promoter methylation, mRNA and microRNA expression. A subset (97) underwent low-depth-of-coverage whole-genome sequencing. 16% of CRC have hypermutation, three quarters of which have the expected high microsatellite instability (MSI), usually with hypermethylation and MLH1 silencing, but one quarter has somatic mismatch repair gene mutations. Excluding hypermutated cancers, colon and rectum cancers have remarkably similar patterns of genomic alteration. Twenty-four genes are significantly mutated. In addition to the expected APC, TP53, SMAD4, PIK3CA and KRAS mutations, we found frequent mutations in ARID1A, SOX9, and FAM123B/WTX. Recurrent copy number alterations include potentially drug-targetable amplifications of ERBB2 and newly discovered amplification of IGF2. Recurrent chromosomal translocations include fusion of NAV2 and WNT pathway member TCF7L1. Integrative analyses suggest new markers for aggressive CRC and important role for MYC-directed transcriptional activation and repression.
We investigated the functional recovery of motoneurons after reimplanting an avulsed ventral root in a rat model of traction injury. The eighth cervical root (C8) was avulsed by controlled traction and immediately reimplanted to the spinal cord. Spinal nerves from neighbouring segments (C5, C6, C7 and T1) were ligated and cut. After 12 or 20 weeks, the survival, regeneration and functional recovery of spinal motoneurons were evaluated by Nissl staining, retrograde labelling of motoneurons, NOS histochemistry, histological examination of muscle and nerve±muscle junction, electromyography and behavioural observation. In the control animals, about 14% or 11% of spinal motoneurons survived 12 or 20 weeks postinjury, respectively. By contrast, in animals with ventral root reimplantation, 62% and 55% of motoneurons survived at 12 or 20 weeks postinjury, respectively. Retrograde labelling and histological examination indicated that about 90% of the surviving motoneurons in the C8 segment regenerated axons into the reimplanted ventral root. Staining the muscles with silver and cholinesterase revealed new motor endplates in the reinnervated muscle. Functionally signi®cant electromyographic responses in¯exor digitorum super®cialis and¯exor carpi radialis were observed in experimental animals; however, the average latency of the motor action potentials was greater than normal control. The grasping test showed functional recovery of ®nger¯exors and median nerve. In conclusion, our results indicate that spinal motoneurons can regenerate axons through reimplanted roots and reinnervate muscles to recover partial function.
In the peripheral nervous system (PNS), root avulsion causes motoneuron degeneration, but the majority of motoneurons can survive axotomy. In order to study the mechanism of motoneuron degeneration, we compared the expression patterns of c-jun and neuronal nitric oxide synthase (nNOS), the well-known molecular players in PNS regeneration and degeneration, among adult rats having undergone axotomy (Ax), avulsion (Av), or pre-axotomy plus secondary avulsion (Ax + Av) of the brachial plexus. Our results showed that the highest and longest-lasting c-jun activation occurred in Ax, which was much stronger than those in Av and Ax + Av. The time course and intensity of c-jun expression in Ax + Av were similar to those in Av except on day 1, while the pre-axotomy condition resulted in a transient up-regulation of c-jun to a level comparable to that in Ax. Axotomy alone did not induce nNOS expression in motoneurons. Pre-axotomy left-shifted the time course of nNOS induction in Ax + Av compared to that in Av. Motoneuron loss was not evident in Ax, while it was 70% in Av and more than 85% in Ax + Av at 8 weeks postinjury. The survival of motoneurons was positively correlated with c-jun induction, but not with nNOS expression in motoneurons. Moreover, c-jun induction was negatively correlated with nNOS induction in injured motoneurons. Our results indicate that functional crosstalk between c-jun and nNOS might play an important role in avulsion-induced motoneuron degeneration, while c-jun might act as a prerequisite survival factor and nNOS might act as a predictor for the onset of motoneuron degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.