Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes severe disease following congenital infection and in immunocompromised individuals. No vaccines are licensed, and there are limited treatment options. We now show that the addition of anti-HCMV antibodies (Abs) can activate NK cells prior to the production of new virions, through Ab-dependent cellular cytotoxicity (ADCC), overcoming viral immune evasins. Quantitative proteomics defined the most abundant HCMV proteins on the cell surface, and we screened these targets to identify the viral antigens responsible for activating ADCC. Surprisingly, these were not structural glycoproteins; instead, the immune evasins US28, RL11, UL5, UL141, and UL16 each individually primed ADCC. We isolated human monoclonal Abs (mAbs) specific for UL16 or UL141 from a seropositive donor and optimized them for ADCC. Cloned Abs targeting a single antigen (UL141) were sufficient to mediate ADCC against HCMV-infected cells, even at low concentrations. Collectively, these findings validated an unbiased methodological approach to the identification of immunodominant viral antigens, providing a pathway toward an immunotherapeutic strategy against HCMV and potentially other pathogens.
Background
Hepatocellular carcinoma (HCC) is common, but remains difficult to treat. Natural killer (NK) cells are cells of the innate immune system that have potent anti-cancer activity. Recent work has shown that stimulation with IL-12/15/18 leads to the generation of NK cells with enhanced functional and putative “memory” properties. We have investigated the activity of these NK cells against HCC cell lines in vitro and in a mouse model.
Methods
NK cells from healthy donors or individuals with HCC were activated with IL-12/15/18 in vitro and tested for cytotoxic activity against a panel of human HCC cell lines. IL-12/15/18 primed murine NK cells were then infused into a murine model of spontaneously arising HCC to test for anti-tumor activity.
Results
NK cells from patients and healthy controls had similar expression levels of activating and inhibitory NK cell receptors. However, proliferation of NK cells from HCC patients was weaker than healthy controls in response to IL-12/15/18 and IL-2 (
p
< 0.001 at day 9). In vitro, NK cells from both groups of individuals killed HCC targets to similar levels and this was unrelated to NKG2D expression. In a spontaneous model of HCC, IL-12/15/18 activated NK cells trafficked to the liver and resulted in lower levels of spontaneous HCC formation (
p
< 0.01).
Conclusion
Cytokine-primed NK cells from patients with HCC have similar levels of activity against HCC cell lines as those from healthy controls. This type of activated NK cell has immunotherapeutic potential against hepatocellular carcinoma.
Electronic supplementary material
The online version of this article (10.1007/s12072-018-9909-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.