We consider marginal semiparametric partially linear models for longitudinal/clustered data and propose an estimation procedure based on a spline approximation of the non-parametric part of the model and an extension of the parametric marginal generalized estimating equations (GEE). Our estimates of both parametric part and non-parametric part of the model have properties parallel to those of parametric GEE, that is, the estimates are efficient if the covariance structure is correctly specified and they are still consistent and asymptotically normal even if the covariance structure is misspecified. By showing that our estimate achieves the semiparametric information bound, we actually establish the efficiency of estimating the parametric part of the model in a stronger sense than what is typically considered for GEE. The semiparametric efficiency of our estimate is obtained by assuming only conditional moment restrictions instead of the strict multivariate Gaussian error assumption. Copyright 2007 Board of the Foundation of the Scandinavian Journal of Statistics..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.