Odin is a 250 kg class satellite built in co-operation between Sweden, Canada, France, and Finland and launched in February 2001. It carries two instruments: a 4-band sub-millimetre radiometer used for both astronomy and atmospheric science and an optical spectrometer and infrared imaging system for purely atmospheric observations. As part of the joint mission Odin will observe the atmospheric limb for 50% of the observation time producing profiles of many species of interest in the middle atmosphere with a vertical resolution of 12 km. These species include, among others, ozone, nitrogen dioxide, chlorine monoxide, nitric acid, water vapour, and nitrous oxide. An overview of the mission and the planned measurements is given. PACS Nos.: 42.68Mj, 94.10Dy, 95.55Fw
The optical spectrograph and infrared imager system (OSIRIS) on board the Odin spacecraft is designed to retrieve altitude profiles of terrestrial atmospheric minor species by observing limb-radiance profiles. The grating optical spectrograph (OS) obtains spectra of scattered sunlight over the range 280-800 nm with a spectral resolution of approximately 1 nm. The Odin spacecraft performs a repetitive vertical limb scan to sweep the OS 1 km vertical field of view over selected altitude ranges from approximately 10 to 100 km. The terrestrial absorption features that are superimposed on the scattered solar spectrum are monitored to derive the minor species altitude profiles. The spectrograph also detects the airglow, which can be used to study the mesosphere and lower thermosphere. The other part of OSIRIS is a three-channel infrared imager (IRI) that uses linear array detectors to image the vertical limb radiance over an altitude range of approximately 100 km. The IRI observes both scattered sunlight and the airglow emissions from the oxygen infrared atmospheric band at 1.27 µm and the OH (3-1) Meinel band at 1.53 µm. A tomographic inversion technique is used with a series of these vertical images to derive the two-dimensional distribution of the emissions within the orbit plane.Résumé : Le système de spectrographie optique et d'imagerie infrarouge (OSIRIS) à bord du satellite Odin est conçu pour enregistrer les profils en altitude des éléments mineurs de l'atmosphère en observant les profils de radiance du limbe. Le spectrographe optique à réseau (OS) obtient les spectres de la lumière solaire diffusée sur le domaine entre 280-800 nm, avec une résolution spatiale approximative de 1 nm. Le satellite Odin balaye verticalement le limbe de façon répétée, de telle sorte que l'ouverture verticale de 1 km du OS parcoure les domaines voulus entre 10 et 100 km. Nous analysons les spectres solaires diffusés en superposition avec les caractéristiques terrestres d'absorption, afin de déterminer les profils en altitude des éléments mineurs de l'atmosphère. Le spectrographe détecte aussi la luminescence nocturne atmosphérique qui peut être utilisé pour étudier la mésosphère et la thermosphère. L'autre partie d'OSIRIS est un imageur infrarouge (IRI) à trois canaux qui utilise une banque linéaire de détecteurs pour imager la radiance du limbe sur un domaine d'altitude d'approximativement 100 km. L'IRI observe à la fois la lumière solaire diffusée et les émissions de luminescence nocturne atmospérique provenant de la bande infrarouge de l'oxygène atmosphérique à 1.27 µm et la bande de Meinel de l'OH (3-1) à 1.53 µm. Nous utilisons une technique d'inversion tomographique avec une série de ces images verticales pour obtenir la distribution bidimensionnelle des émissions à l'intérieur de l'orbite.[Traduit par la Rédaction] Can.
[1] This study compares the limb scattered radiances calculated by six radiative transfer models for a variety of viewing conditions. Atmospheres that include molecular scattering, aerosol scattering, and ozone absorption are considered. All models treat single scattering accurately in full spherical geometry. Two ''approximate spherical'' models (CDI and LIMBTRAN) rely on the plane-parallel atmosphere approximation to calculate the diffuse radiance field; the remaining four ''spherical'' models (Siro, MCC++, GSLS, and CDIPI) treat multiple scattering in a spherical atmosphere. Only three of the models (Siro, MCC++, and GSLS) have vector treatment with polarization. A brief comparison of vector radiances with the limb scattered radiances measured by the SOLSE and LORE instruments demonstrates agreement usually within 15% and always within 30%. The inclusion of polarization appears to have little effect on the level of agreement among the models (which agree to within 2% for this sample case). A more general comparison among calculated scalar radiances follows, including four solar zenith angles (20°, 60°, 80°, and 90°), three relative azimuth angles (20°, 90°, and 160°), and two surface albedos (0 and 0.95). The single scattered radiances agree to within 1% for almost every case. Comparisons of the total radiance show larger differences, with 2-4% spread among the results of the spherical models. The approximate spherical models show a positive radiance difference relative to the other models that increases with tangent height, reaching as much as 8% at 60 km. The rule used to divide the model atmosphere into discrete layers is shown to affect the calculated radiance, causing a height-dependent difference of up to 1% for 1 km layer thickness.
Abstract. At present, satellite-based limb-viewing measurements in near-UV, visible, and near-IR wavelength range are based on the attenuation of direct solar light (the Stratospheric Aerosol and Gas Experiment instruments). This paper studies a new technique: the measurement of backscattered solar radiance spectrum in limb-viewing geometry. A multiple-scattering backward Monte Carlo algorithm "Siro" has been constructed for realistic radiative transfer modeling of these measurements. By Monte Carlo simulation the difficult spherical geometry of limb-viewing can be accurately modeled, as can constituent densities and boundary conditions that vary in three dimensions. Previous multiple-scattering models applicable to limb-viewing all assume a spherical shell atmosphere. The backward technique is very efficient for simulating a receiver that has a narrow field of view. In this paper the role of multiple scattering is studied by the Siro model in an atmosphere including scattering by molecules and aerosols and absorption by 03. Simulations show that the multiple to total scattering ratio increases from almost zero at 300 nm to •0 5-60% at visible and near-IR wavelengths (depending on solar geometry and albedo of Earth's surface). A single-scattering model is not sufficient for the analysis of limb radiance measurements. When the solar zenith angle is small, limb radiance is very sensitive to the surface albedo. A bright spot of diameter 50 km on an otherwise dark surface already causes a noticeable increase of intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.