BackgroundThe asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced.Methodology/Principal FindingsGenome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana ‘Brazil’ in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety ‘Brazil’.Conclusions/SignificanceFoc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance us develop effective methods for managing the banana vascular wilt disease, including improvement of disease resistance in banana.
Domain of unknown function 1644 (DUF1644) is a highly conserved amino acid sequence motif present only in plants. Analysis of expression data of the family of DUF1644-containing genes indicated that they may regulate responses to abiotic stress in rice. Here we present our discovery of the role of OsSIDP366, a member of the DUF1644 gene family, in response to drought and salinity stresses in rice. Transgenic rice plants overexpressing OsSIDP366 showed enhanced drought and salinity tolerance and reduced water loss as compared to that in the control, whereas plants with downregulated OsSIDP366 expression levels using RNA interference (RNAi) were more sensitive to salinity and drought treatments. The sensitivity to abscisic acid (ABA) treatment was not changed in OsSIDP366-overexpressing plants, and OsSIDP366 expression was not affected in ABA-deficient mutants. Subcellular localization analysis revealed that OsSIDP366 is presented in the cytoplasmic foci that colocalized with protein markers for both processing bodies (PBs) and stress granules (SGs) in rice protoplasts. Digital gene expression (DGE) profile analysis indicated that stress-related genes such as SNAC1, OsHAK5 and PRs were upregulated in OsSIDP366-overexpressing plants. These results suggest that OsSIDP366 may function as a regulator of the PBs/SGs and positively regulate salt and drought resistance in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.